• search hit 1 of 54
Back to Result List

Maintenance scheduling optimisation of Reverse Osmosis Networks (RONs) via a multistage Optimal Control reformulation

  • State-of-the-art approaches for membrane cleaning scheduling have focused on the Mixed-Integer Nonlinear Programming (MINLP) formulation so far, a strategy leading to a combinatorial problem that does not capture accurately the dynamic behaviour of the system. In this work, the Reverse Osmosis (RO) cleaning scheduling problem is solved using a novel approach based on the Multistage Integer Nonlinear Optimal Control Problem (MSINOCP) formulation. The approach produces an automated solution for the membrane cleaning scheduling, which also obviates the need for any form of combinatorial optimisation. Two different simulations, for 26 and 52 periods of operation (each period with a duration of one week), are carried out to illustrate the application of the proposed framework and the total cost is 1.17 and 2.48 10⁷ €, respectively. The RO network configuration considers 2 stages, each with 3 individual RO modules. The results show evidently that the new proposed solution framework can solve successfully this type of problems, even forState-of-the-art approaches for membrane cleaning scheduling have focused on the Mixed-Integer Nonlinear Programming (MINLP) formulation so far, a strategy leading to a combinatorial problem that does not capture accurately the dynamic behaviour of the system. In this work, the Reverse Osmosis (RO) cleaning scheduling problem is solved using a novel approach based on the Multistage Integer Nonlinear Optimal Control Problem (MSINOCP) formulation. The approach produces an automated solution for the membrane cleaning scheduling, which also obviates the need for any form of combinatorial optimisation. Two different simulations, for 26 and 52 periods of operation (each period with a duration of one week), are carried out to illustrate the application of the proposed framework and the total cost is 1.17 and 2.48 10⁷ €, respectively. The RO network configuration considers 2 stages, each with 3 individual RO modules. The results show evidently that the new proposed solution framework can solve successfully this type of problems, even for large scale configurations, long time horizons and arbitrary realistic complexity of the underlying dynamic model of the RO process considered.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Vassileios Mappas, Vassilios S. Vassiliadis, Bogdan DorneanuORCiD, Harvey Arellano-GarciaORCiD
URL:https://www.sciencedirect.com/science/article/pii/S0011916422005604?via%3Dihub
DOI:https://doi.org/10.1016/j.desal.2022.116105
ISSN:1873-4464
ISSN:0011-9164
Title of the source (English):Desalination
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2022
Volume/Year:543
Article number:116105
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Prozess- und Anlagentechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.