• search hit 6 of 9
Back to Result List

Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

  • Vicinities of manufactured gas plants were often contaminated with solid iron–cyanide complexes as a result of the coal gasification process. During the remediation of affected soils, knowledge about contaminant concentrations is crucial, but laboratory methods are often expensive and time consuming. Rapid and non-destructive field methods for contaminant determination permit an analysis of large sample numbers and hence, facilitate identification of ‘hot spots’ of contamination. Diffuse near infrared reflectance spectroscopy has proven to be a reliable analytical tool in soil investigation. In order to determine the feasibility of a Polychromix Handheld Field Portable Near-Infrared Analyzer (FP NIR), various sample preparation methods were examined, including homogenizing, sieving, drying, and grinding. Partial least squares calibration models were developed to determine near infrared (NIR) spectral responses to the cyanide concentration in the soil samples. As a control, the contaminant concentration was determined usingVicinities of manufactured gas plants were often contaminated with solid iron–cyanide complexes as a result of the coal gasification process. During the remediation of affected soils, knowledge about contaminant concentrations is crucial, but laboratory methods are often expensive and time consuming. Rapid and non-destructive field methods for contaminant determination permit an analysis of large sample numbers and hence, facilitate identification of ‘hot spots’ of contamination. Diffuse near infrared reflectance spectroscopy has proven to be a reliable analytical tool in soil investigation. In order to determine the feasibility of a Polychromix Handheld Field Portable Near-Infrared Analyzer (FP NIR), various sample preparation methods were examined, including homogenizing, sieving, drying, and grinding. Partial least squares calibration models were developed to determine near infrared (NIR) spectral responses to the cyanide concentration in the soil samples. As a control, the contaminant concentration was determined using conventional flow injection analysis. The experiments revealed that portable near-infrared spectrometers could be a reliable device for detecting cyanide concentrations >2,400 mgkg−1 in the field and >1,750 mgkg−1 after sample preparation in the laboratory.We found that portable NIR spectrometry cannot replace traditional laboratory analyses due to high limits of detection, but that it could be used for identification of contamination ‘hot spots’.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Magdalena Sut-LohmannORCiD, Thomas FischerORCiD, Frank Repmann, Thomas RaabORCiDGND, Tsvetelina Dimitrova
DOI:https://doi.org/10.1007/s11270-012-1298-y
ISSN:1573-2932
Title of the source (English):Water, Air and Soil Pollution
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2012
Volume/Year:223
Issue number:8
First Page:5495
Last Page:5504
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Fakultät 2 Umwelt und Naturwissenschaften / FG Geopedologie und Landschaftsentwicklung
Zentrale Einrichtungen / Zentrale Analytik der BTU Cottbus-Senftenberg (ZA-BTU) / Zentrales Analytisches Labor
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Bodenschutz und Rekultivierung
Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / Zentrales Analytisches Labor
Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Geopedologie und Landschaftsentwicklung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.