• search hit 13 of 29
Back to Result List

Reduction by H2 exposure at room temperature of ceria ultrathin films grown by atomic layer deposition

  • Atomic layer deposition (ALD) exhibits a high potential for integration as a scalable process in microelectronics, allowing well-controlled layer-by-layer deposition and conformal growth on 3D structures. Yet, the ALD technique is also well known to lead to amorphous and defective, non-stoichiometric films, potentially resulting in modified materials properties that, in the case of ultra-thin deposits, can also be affected by film/substrate interaction. Interestingly, initial in situ X-ray photoemission spectroscopy (XPS) measurements of ceria ALD-deposits on Al2O3/Si, sapphire, and SiO2 substrates confirm a Ce3+/Ce4+ mixture dependent on the substrate interaction, deposit thickness, and morphology. Using near-ambient pressure XPS, we have significantly reduced ultrathin (< 10 nm) ceria films grown by ALD by exposing them to different O2/H2 partial pressures at moderate temperatures (< 525K). Notably, the total amount of reduction to Ce3+ is found to depend on the deposit thickness and initial ceria/substrate interaction. Furthermore,Atomic layer deposition (ALD) exhibits a high potential for integration as a scalable process in microelectronics, allowing well-controlled layer-by-layer deposition and conformal growth on 3D structures. Yet, the ALD technique is also well known to lead to amorphous and defective, non-stoichiometric films, potentially resulting in modified materials properties that, in the case of ultra-thin deposits, can also be affected by film/substrate interaction. Interestingly, initial in situ X-ray photoemission spectroscopy (XPS) measurements of ceria ALD-deposits on Al2O3/Si, sapphire, and SiO2 substrates confirm a Ce3+/Ce4+ mixture dependent on the substrate interaction, deposit thickness, and morphology. Using near-ambient pressure XPS, we have significantly reduced ultrathin (< 10 nm) ceria films grown by ALD by exposing them to different O2/H2 partial pressures at moderate temperatures (< 525K). Notably, the total amount of reduction to Ce3+ is found to depend on the deposit thickness and initial ceria/substrate interaction. Furthermore, the intrinsic defects related to the ALD method seem to play a critical role in the reversible reduction at room temperature.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Carlos MoralesORCiD, Yuliia KostoORCiD, Rudi Tschammer, Karsten HenkelORCiDGND, Jan Ingo FlegeORCiD
URL:https://www.dpg-verhandlungen.de/year/2023/conference/skm/part/o/session/92/contribution/6
ISSN:0420-0195
Title of the source (English):Verhandlungen der DPG
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference publication not peer-reviewed
Language:English
Year of publication:2023
Tag:Cerium oxide; atomic layer deposition; hydrogen detection; near-ambient pressure X-ray photoemission spectroscopy (NAPXPS)
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.