• search hit 18 of 30
Back to Result List

PrOx/AlON stacks as a high-k candidate on SiC

  • We study the chemical stability and electrical properties of Pr-oxides-SiC MIS stacks. In MISFET devices for high power applications the electric field scaling at the interface between semiconductor and insulator is determined by the ratio of their permittivity values. A high-k material can be used to optimize the performance of such devices. In previous studies we had to understand that the chemical reactivity of the PrOx/SiC interface causes a destructive interaction yielding silicate and graphite formation as well as poor electrical performance after direct deposition of PrOx onto SiC. Therefore we introduced an additional chemically inert layer and in this contribution we focus on PrOx/AlON as a suitable insulator stack. In our spectroscopic investigations we recognized a stable AlON/3C-SiC interface even for annealing steps up to 900∘C. First electrical characterizations are performed on Si substrates and we find a strong improvement in the leakage current by several orders of magnitude down to values of 10−7 A/cm2 at an EOT ofWe study the chemical stability and electrical properties of Pr-oxides-SiC MIS stacks. In MISFET devices for high power applications the electric field scaling at the interface between semiconductor and insulator is determined by the ratio of their permittivity values. A high-k material can be used to optimize the performance of such devices. In previous studies we had to understand that the chemical reactivity of the PrOx/SiC interface causes a destructive interaction yielding silicate and graphite formation as well as poor electrical performance after direct deposition of PrOx onto SiC. Therefore we introduced an additional chemically inert layer and in this contribution we focus on PrOx/AlON as a suitable insulator stack. In our spectroscopic investigations we recognized a stable AlON/3C-SiC interface even for annealing steps up to 900∘C. First electrical characterizations are performed on Si substrates and we find a strong improvement in the leakage current by several orders of magnitude down to values of 10−7 A/cm2 at an EOT of 4nm and interface state densities of mean values of 5*1011/eVcm2. We also report on our ongoing electrical characterization of such stacks on SiC substrates. This work is supported by Deutsche Forschungsgemeinschaft within priority program 1157 (DSCH 745/9-2).show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Karsten HenkelORCiDGND, Rakesh Sohal, Mohamed Torche, Carola Schwiertz, Yevgen Burkov, Dieter SchmeißerORCiD
URL:http://www.dpg-verhandlungen.de/year/2007/conference/regensburg/part/df/session/10/contribution/8
ISSN:0420-0195
Title of the source (German):Verhandlungen der Deutschen Physikalischen Gesellschaft ; Reihe 6, Bd. 42
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference Proceeding
Language:English
Year of publication:2007
First Page:S. 215
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Angewandte Physik / Sensorik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.