• search hit 1 of 8
Back to Result List

In situ real-time and ex situ spectroscopic analysis of Al₂O₃ films prepared by plasma enhanced atomic layer deposition

  • In situ real-time ellipsometry (irtE) with a very high time resolution of 24 ms was applied to monitor the inductively coupled plasma enhanced atomic layer deposition (ALD) process of Al₂O₃ thin films to precisely resolve each step of the ALD process and its complete cycle. The influence of plasma power, plasma pulse duration, and deposition temperature on the film growth characteristics was investigated. Ex situ ellipsometry [UV-VIS-NIR-SE (ultraviolet-visible-nearinfrared-spectroscopic ellipsometry) and IR-SE (infrared spectroscopic ellipsometry)] and x-ray photoelectron spectroscopy revealed the bulk properties (thickness, refractive index, chemical composition, and carbon incorporation) of the films, which together with the in situ results are compared to those of the films prepared by thermal ALD (T-ALD). The ICPEALD (inductively coupled plasma enhanced ALD) films were deposited at substrate temperatures between 80 and 250 °C and the role of plasma power (50–300 W) and its pulse duration (1–20 s) was investigated at 250 °C. TheIn situ real-time ellipsometry (irtE) with a very high time resolution of 24 ms was applied to monitor the inductively coupled plasma enhanced atomic layer deposition (ALD) process of Al₂O₃ thin films to precisely resolve each step of the ALD process and its complete cycle. The influence of plasma power, plasma pulse duration, and deposition temperature on the film growth characteristics was investigated. Ex situ ellipsometry [UV-VIS-NIR-SE (ultraviolet-visible-nearinfrared-spectroscopic ellipsometry) and IR-SE (infrared spectroscopic ellipsometry)] and x-ray photoelectron spectroscopy revealed the bulk properties (thickness, refractive index, chemical composition, and carbon incorporation) of the films, which together with the in situ results are compared to those of the films prepared by thermal ALD (T-ALD). The ICPEALD (inductively coupled plasma enhanced ALD) films were deposited at substrate temperatures between 80 and 250 °C and the role of plasma power (50–300 W) and its pulse duration (1–20 s) was investigated at 250 °C. The reference T-ALD layers were prepared at 200 °C. The ICPEALD process of Al₂O₃ shows an increased growth rate, and the produced films exhibit higher carbon contaminations than the T-ALD Al₂O₃ films. Plasma pulse times of up to 15 s further increase the content of carbon and CH species; at the same time, the refractive index decreases. The optical properties of ICPEALD deposited Al₂O₃ films are comparable with those of the T-ALD films for low plasma power and short plasma pulse durations. For the ICPEALD films, UV absorption is found and it is dependent on the deposition parameters. irtE resolves process effects that correlate with the bulk properties of Al₂O₃, such as impurities and oxygen deficiencies.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Franziska NaumannORCiD, Johanna Reck, Hassan Gargouri, Bernd Gruska, Adrian Blümich, Ali MahmoodinezhadORCiD, Christoph JanowitzORCiD, Karsten HenkelORCiDGND, Jan Ingo FlegeORCiD
DOI:https://doi.org/10.1116/1.5122797
ISSN:0734-211X
ISSN:1071-1023
ISSN:2166-2746
ISSN:2166-2754
Title of the source (English):Journal of Vacuum Science and Technology B
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2020
Tag:Plamsa enhanced atomic layer deposition (PEALD); X-ray photoelectron spectroscopy; aluminum oxide (Al₂O₃); real-time monitoring; spectroscopic ellipsometry
Volume/Year:38
Issue number:1
Number of pages:10
Article number:014014
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.