• search hit 93 of 102
Back to Result List

An inverse approach to identify tuned aerodynamic damping, system frequencies and mistuning – Part 3: Application to engine data

  • A novel approach for the identification of tuned aerodynamic damping, system frequencies, forcing and mistuning has been introduced in the first part of this paper. It is based on the forced response equations of motion for a blade dominated mode family. A least squares formulation allows to identify the system’s parameters directly from measured frequency response functions (FRFs) of all blades recorded during a sweep through a resonance. The second part has dealt with its modification and application to experimental modal analyses of blisks at rest. This 3rd part aims at presenting the application of the approach to blade tip timing (BTT) data acquired in rig tests. Therefore, blisk rotors of two different engines are studied: a single stage fan rig and a 4.5 stage high pressure compressor (HPC) rig. The rig test campaign of the fan blisk included also an intentional mistuning experiment that allows to study the performance of the identification approach for a similar rotor with two different mistuning levels. It is demonstratedA novel approach for the identification of tuned aerodynamic damping, system frequencies, forcing and mistuning has been introduced in the first part of this paper. It is based on the forced response equations of motion for a blade dominated mode family. A least squares formulation allows to identify the system’s parameters directly from measured frequency response functions (FRFs) of all blades recorded during a sweep through a resonance. The second part has dealt with its modification and application to experimental modal analyses of blisks at rest. This 3rd part aims at presenting the application of the approach to blade tip timing (BTT) data acquired in rig tests. Therefore, blisk rotors of two different engines are studied: a single stage fan rig and a 4.5 stage high pressure compressor (HPC) rig. The rig test campaign of the fan blisk included also an intentional mistuning experiment that allows to study the performance of the identification approach for a similar rotor with two different mistuning levels. It is demonstrated that the approach can identify aerodynamic damping curves, system frequencies, mistuning pattern and forced travelling wave modes (TWMs) from state of the art BTT data monitored during rig or engine tests. All derived mistuning patterns could be verified with reference measurements at standstill. The derived aerodynamic damping curves and system frequencies show a reasonable agreement with simulations. For the HPC case a multitude of excited TWMs could be identified which also lines up with previous simulations.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Felix Figaschewsky, Arnold Kühhorn, Bernd BeirowORCiD, Thomas Giersch, Sven Schrape, Jens Nipkau
URL:https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2019/58684/V07AT36A014/1067111
DOI:https://doi.org/10.1115/GT2019-91337
ISBN:978-0-7918-5868-4
Title of the source (English):ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17–21, 2019, Phoenix, Arizona, USA
Document Type:Conference publication peer-reviewed
Language:English
Year of publication:2019
Tag:Blades; Compressors; Damping; Engineering simulation; Engines; Modal analysis; Rotors
Number of pages:13
Series ; volume number:Proceedings Papers ; 7A
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Strukturmechanik und Fahrzeugschwingungen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.