• search hit 2 of 34
Back to Result List

The Levenberg-Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography

  • An efficient and robust electrical resistivity tomographic inversion algorithm based on the Levenberg-Marquardt method is considered to obtain quantities like grain size, source discrimination and particle size distribution. The corresponding model in two-dimensions is based on the Maxwell equations and leads to a partial differential equation with mixed Dirichlet-Neumann boundary conditions. The forward problem is solved numerically with the finite-difference method. However, the inverse problem at hand is a classic nonlinear and ill-posed parameter estimation problem. Linearizing it and applying the Tikhonov regularization method yields an iterative scheme, the Levenberg-Marquardt method. Several systems of equations of large size have to be solved efficiently in each iteration step which is accomplished by the conjugate gradient method without setting up the corresponding matrix. Instead fast matrix-vector multiplications are performed directly. Therefore, the derivative and its adjoint for the parameter-to-solution map are needed.An efficient and robust electrical resistivity tomographic inversion algorithm based on the Levenberg-Marquardt method is considered to obtain quantities like grain size, source discrimination and particle size distribution. The corresponding model in two-dimensions is based on the Maxwell equations and leads to a partial differential equation with mixed Dirichlet-Neumann boundary conditions. The forward problem is solved numerically with the finite-difference method. However, the inverse problem at hand is a classic nonlinear and ill-posed parameter estimation problem. Linearizing it and applying the Tikhonov regularization method yields an iterative scheme, the Levenberg-Marquardt method. Several systems of equations of large size have to be solved efficiently in each iteration step which is accomplished by the conjugate gradient method without setting up the corresponding matrix. Instead fast matrix-vector multiplications are performed directly. Therefore, the derivative and its adjoint for the parameter-to-solution map are needed. Numerical results demonstrate the performance of our method as well as the possibility to reconstruct some of the desired parameters.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Andreas Kleefeld, Martin Reißel
ISSN:0096-3003
Title of the source (English):Journal of Applied Mathematics and Computation
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2011
Tag:Fréchett derivative; Levenberg-Marquardt method; estimation problem; nonlinear and ill-posed problem; parameter estimation problem
Volume/Year:217
Issue number:9
First Page:4490
Last Page:4501
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Numerische Mathematik und Wissenschaftliches Rechnen
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Mathematik, insbesondere Numerische Mathematik und Wissenschaftliches Rechnen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.