• search hit 14 of 22
Back to Result List

Considerations About the Necessary Mesh Density of Bearings in Detailed Finite Element Models

  • In order to predict properly the behavior of very complex mechanical models, much focus needs to be done on the level of model details as well as the techniques used to predict component movements based on mechanical and thermal loads. In particular bearings and joints play a significant role in big model assemblies such as aero-engines where most of the structures are modeled by solid elements rather than using traditional shell or beam elements. This approach is very complex and expensive in terms of computational effort however can lead to increased simulation accuracy when done properly. This publication will answer questions related to the modeling techniques required for detailed bearings (not only rotor bearings) and joints of an aero-engine application where these components are not idealized or simplified, i.e. the ball in a ball joint is meshed by solid elements. The investigation will discuss the question about the number of elements needed to mesh a ball joint in such a way that a correct rotation is possible. If theIn order to predict properly the behavior of very complex mechanical models, much focus needs to be done on the level of model details as well as the techniques used to predict component movements based on mechanical and thermal loads. In particular bearings and joints play a significant role in big model assemblies such as aero-engines where most of the structures are modeled by solid elements rather than using traditional shell or beam elements. This approach is very complex and expensive in terms of computational effort however can lead to increased simulation accuracy when done properly. This publication will answer questions related to the modeling techniques required for detailed bearings (not only rotor bearings) and joints of an aero-engine application where these components are not idealized or simplified, i.e. the ball in a ball joint is meshed by solid elements. The investigation will discuss the question about the number of elements needed to mesh a ball joint in such a way that a correct rotation is possible. If the mesh is too coarse, a rotation would be impossible due to the faceting of the rotating parts. It will be shown that a proper rotation depends on a correct relation between the radius of the inner ball, the gap size of the bearing and the number of nodes in the circumferential direction. For this relation an analytical formula has been derived and successfully tested at some examples. Furthermore, some finite element codes offer the possibility of smoothed contact surfaces. These options improve the situation but they might cause issues too. For this reason these smoothed contact options are also considered under the aspects mentioned above. Copyright © 2014 by Rolls-Royce Deutschland Ltd & Co KGshow moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Markus Kober, Arnold Kühhorn, Enrico Stelldinger, Akin Keskin
DOI:https://doi.org/10.1115/GT2014-25624
ISBN:978-0-7918-4577-6
Title of the source (English):ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics Düsseldorf, Germany, June 16–20, 2014, Paper GT2014-25624
Publisher:ASME
Document Type:Conference Proceeding
Language:English
Year of publication:2014
Tag:Bearings; Density
Number of pages:8
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Strukturmechanik und Fahrzeugschwingungen
Institution name at the time of publication:Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen (eBTU) / LS Strukturmechanik und Fahrzeugschwingungen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.