• search hit 6 of 8
Back to Result List

Thermomechanical laser welding simulation of dissimilar steel-aluminum overlap joints

  • Mixing of steel and aluminum within the weld pool during keyhole laser welding results in a complex dissimilar microstructure, which in turn, initiates a shift in weld metal mechanical properties. In this study, a numerical model for computation of distortions in laser-welded dissimilar overlap joints (austenitic stainless steel 304 – 6082-T6 aluminum alloy), which considers properties of the mixed steel-aluminum weld metal was developed. The required yield strength, Young's modulus, and strain hardening exponent of the weld metal were experimentally determined using the indentation technique coupled with energy-dispersive X-ray spectroscopy. The designed material model calculates the weld elastic-plastic properties as a function of the aluminum concentration. The softening of the alloys in the heat-affected zone was determined by physical simulations and considered as a function of maximum temperature. Computed and measured distortions showed good agreement for various welding regimes with an average deviation of 18.4%. TheMixing of steel and aluminum within the weld pool during keyhole laser welding results in a complex dissimilar microstructure, which in turn, initiates a shift in weld metal mechanical properties. In this study, a numerical model for computation of distortions in laser-welded dissimilar overlap joints (austenitic stainless steel 304 – 6082-T6 aluminum alloy), which considers properties of the mixed steel-aluminum weld metal was developed. The required yield strength, Young's modulus, and strain hardening exponent of the weld metal were experimentally determined using the indentation technique coupled with energy-dispersive X-ray spectroscopy. The designed material model calculates the weld elastic-plastic properties as a function of the aluminum concentration. The softening of the alloys in the heat-affected zone was determined by physical simulations and considered as a function of maximum temperature. Computed and measured distortions showed good agreement for various welding regimes with an average deviation of 18.4%. The sensitivity analyses indicated that the application of the developed weld material model significantly improves the accuracy of the thermomechanical simulations.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Anton Evdokimov, Nikolay DoynovORCiD, Ralf OssenbrinkORCiD, Aleksei ObrosovORCiD, Sabine WeißORCiDGND, Vesselin MichailovORCiDGND
DOI:https://doi.org/10.1016/j.ijmecsci.2020.106019
ISSN:1879-2162
Title of the source (English):International Journal of Mechanical Sciences
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2021
Volume/Year:190
Number of pages:18
Article number:106019
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Füge- und Schweißtechnik
Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.