• search hit 5 of 8
Back to Result List

Precipitation phenomena in impulse friction stir welded 2024 aluminium alloy

  • Microhardness variations across the friction stir welded (FSW) and impulse friction stir welded (IFSW) AA2024–T351 joints have been elucidated by the transformations of the S–Al2CuMg phase with a special focus on a distinguished hardness peak within the heat-affected zone (HAZ) of the impulse welds. The increase in hardness within the stir zone (SZ) originated from the partial re-precipitation of the initial Guinier-Preston-Bagaryatsky zones (GPB) and metastable S needles, previously dissolved.) Formation and growth of stable S precipitates via coalescence accounted for the softening through the thermo-mechanically affected zone (TMAZ). The peak strengthening within the HAZ of the IFSW joints was mainly caused by the dense needle-shaped S particles, which can be explained by a mutual influence of the process specific temperature and strain cycles. Dislocations and subgrain boundaries introduced to the material due to plastic deformation facilitated the nucleation of strengthening S precipitates in the HAZ. It demonstrates that theMicrohardness variations across the friction stir welded (FSW) and impulse friction stir welded (IFSW) AA2024–T351 joints have been elucidated by the transformations of the S–Al2CuMg phase with a special focus on a distinguished hardness peak within the heat-affected zone (HAZ) of the impulse welds. The increase in hardness within the stir zone (SZ) originated from the partial re-precipitation of the initial Guinier-Preston-Bagaryatsky zones (GPB) and metastable S needles, previously dissolved.) Formation and growth of stable S precipitates via coalescence accounted for the softening through the thermo-mechanically affected zone (TMAZ). The peak strengthening within the HAZ of the IFSW joints was mainly caused by the dense needle-shaped S particles, which can be explained by a mutual influence of the process specific temperature and strain cycles. Dislocations and subgrain boundaries introduced to the material due to plastic deformation facilitated the nucleation of strengthening S precipitates in the HAZ. It demonstrates that the impact of deformation should be considered by the characterization of the precipitation development in the HAZ.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Iuliia Morozova, Aleksandra Królicka, Aleksei ObrosovORCiD, Yitong YangORCiD, Nikolay DoynovORCiD, Sabine WeißORCiDGND, Vesselin MichailovORCiDGND
DOI:https://doi.org/10.1016/j.msea.2022.143617
ISSN:0921-5093
Title of the source (English):Materials Science and Engineering: A
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2022
Tag:AA2024; deformation; impulse friction stir welding; microhardness; s precipitation; thermal cycle
First Page:1
Last Page:11
Article number:143617
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Füge- und Schweißtechnik
Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.