• search hit 4 of 6
Back to Result List

Effect of Hydrogen Exposure on Mechanical and Tribological Behavior of CrₓN Coatings Deposited at Different Pressures on IN718

  • In the current study, the properties of the CrₓN coatings deposited on the Inconel 718 superalloy using direct current reactive magnetron sputtering are investigated. The influence of working pressure on the microstructure, mechanical, and tribological properties of the CrₓN coatings before and after high-temperature hydrogen exposure is studied. The cross-sectional scanning electron micrographs indicate the columnar structure of the coatings, which changes from dense and compact columns to large columns with increasing working pressure. The Cr/N ratio increases from 1.4 to 1.9 with increasing working pressure from 300 to 900 mPa, respectively. X-ray diffraction analysis reveals a change from mixed hcp-Cr₂N and fcc-CrN structure to approximately stoichiometric Cr₂N phase. After gas-phase hydrogenation, the coating deposited at 300 mPa exhibits the lowest hydrogen absorption at 600 °C of all investigated coatings. The results indicate that the dense mixed cubic and hexagonal structure is preferential for hydrogen permeation resistanceIn the current study, the properties of the CrₓN coatings deposited on the Inconel 718 superalloy using direct current reactive magnetron sputtering are investigated. The influence of working pressure on the microstructure, mechanical, and tribological properties of the CrₓN coatings before and after high-temperature hydrogen exposure is studied. The cross-sectional scanning electron micrographs indicate the columnar structure of the coatings, which changes from dense and compact columns to large columns with increasing working pressure. The Cr/N ratio increases from 1.4 to 1.9 with increasing working pressure from 300 to 900 mPa, respectively. X-ray diffraction analysis reveals a change from mixed hcp-Cr₂N and fcc-CrN structure to approximately stoichiometric Cr₂N phase. After gas-phase hydrogenation, the coating deposited at 300 mPa exhibits the lowest hydrogen absorption at 600 °C of all investigated coatings. The results indicate that the dense mixed cubic and hexagonal structure is preferential for hydrogen permeation resistance due to the presence of cubic phase with higher packing density in comparison to the hexagonal structure. After hydrogenation, no changes in phase composition were observed; however, a small amount of hydrogen is accumulated in the coatings. An increase of coating hardness and elastic modulus was observed after hydrogen exposure. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient up to 20%–30%. The best value of 0.25 was reached for hydrogen exposed CrₓN coating deposited at 300 mPa.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Aleksei ObrosovORCiD, Alina Sutygina, Alex A. Volinsky, Anton Manakhov, Sabine WeißORCiDGND, Egor B. Kashkarov
URL:http://www.mdpi.com/1996-1944/10/5/563/htm
DOI:https://doi.org/10.3390/ma10050563
ISSN:1996-1944
Title of the source (English):Materials
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:CrₓN coatings; GDOES; PVD; hydrogenation; mechanical properties; tribology
Volume/Year:10
Issue number:5
First Page:563
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.