• search hit 4 of 6
Back to Result List

Mechanical and tribological behaviour of hydrogenated CrxN coatings deposited at different pressure and voltages on IN718

  • Hydrogen degradation is a serious problem in industrial applications like power plants (boilers, turbines), marine structures, car and aircraft components, as it leads to failures as well as to deterioration of properties. Inconel 718 is one of the most commonly used materials for these applications. Different metal nitrides like TiN coatings have been deposited in past to prevent hydrogen degradation, which are also known for their high hardness and good wear resistance [1, 2]. However, reports on hydrogen degradation of CrN coatings, which shows better oxidation and corrosion resistance, higher temperature stability and lower friction coefficient than TiN [3, 4] has not been reported till now. Despite a lot of publications about CrN films, up to now the effect of hydrogenation on mechanical and tribological properties of CrN coatings is still not completely understood. In the current work CrxN coatings were deposited by Direct Current Magnetron Sputtering (dcMS) on Inconel 718 substrate at different chamber pressures and substrateHydrogen degradation is a serious problem in industrial applications like power plants (boilers, turbines), marine structures, car and aircraft components, as it leads to failures as well as to deterioration of properties. Inconel 718 is one of the most commonly used materials for these applications. Different metal nitrides like TiN coatings have been deposited in past to prevent hydrogen degradation, which are also known for their high hardness and good wear resistance [1, 2]. However, reports on hydrogen degradation of CrN coatings, which shows better oxidation and corrosion resistance, higher temperature stability and lower friction coefficient than TiN [3, 4] has not been reported till now. Despite a lot of publications about CrN films, up to now the effect of hydrogenation on mechanical and tribological properties of CrN coatings is still not completely understood. In the current work CrxN coatings were deposited by Direct Current Magnetron Sputtering (dcMS) on Inconel 718 substrate at different chamber pressures and substrate voltages. Substrate voltage is one of the most important process parameters which determines the structure of the coating and the adhesion between substrate and coating. Simultaneously a study of the chamber pressure is also needed to understand the deposited structure and growth rate because at higher pressures the high number of argon atoms reduce the number of ionized ions available for the deposition leading to low deposition rates [5]. Gas-phase hydrogenation of the samples was performed at a temperature of 600° C and hydrogen pressure of 2 atm. It was found that CrxN coatings are resistant against hydrogen exposure as compared to uncoated surfaces. The results of changes in the mechanical, tribological properties and phase composition of the coatings after hydrogenation are discussed. Coating microstructure was studied by scanning electron microscopy (SEM). The mechanical properties of the coatings were characterized by means of nanoindentation and scratch test.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Aleksei ObrosovORCiD, Egor B. Kashkarov, Sabine WeißORCiDGND, Alex A. Volinsky
ISBN:978-91-88252-03-6
Title of the source (English):American Advanced Materials Congress 2016
Publisher:VBRI Press
Place of publication:Linköping
Editor: Ashutosh Tiwari
Document Type:Conference Proceeding
Language:English
Year of publication:2016
Tag:CrxN coating; XRD; hydrogenation; mechanical properties; microstructure
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.