• search hit 1 of 2
Back to Result List

Hydrogen Permeation, and Mechanical and Tribological Behavior, of CrNx Coatings Deposited at Various Bias Voltages on IN718 by Direct Current Reactive Sputtering

  • In the current work, the microstructure, hydrogen permeability, and properties of chromium nitride (CrNₓ) thin films deposited on the Inconel 718 superalloy using direct current reactive sputtering are investigated. The influence of the substrate bias voltage on the crystal structure, mechanical, and tribological properties before and after hydrogen exposure was studied. It was found that increasing the substrate bias voltage leads to densification of the coating. X-ray diffraction (XRD) results reveal a change from mixed fcc-CrN + hcp-Cr₂N to the approximately stoichiometric hcp-Cr₂N phase with increasing substrate bias confirmed by wavelength-dispersive X-ray spectroscopy (WDS). The texture coefficients of (113), (110), and (111) planes vary significantly with increasing substrate bias voltage. The hydrogen permeability was measured by gas-phase hydrogenation. The CrN coating deposited at 60 V with mixed c-CrN and (113) textured hcp-Cr₂N phases exhibits the lowest hydrogen absorption at 873 K. It is suggested that the crystalIn the current work, the microstructure, hydrogen permeability, and properties of chromium nitride (CrNₓ) thin films deposited on the Inconel 718 superalloy using direct current reactive sputtering are investigated. The influence of the substrate bias voltage on the crystal structure, mechanical, and tribological properties before and after hydrogen exposure was studied. It was found that increasing the substrate bias voltage leads to densification of the coating. X-ray diffraction (XRD) results reveal a change from mixed fcc-CrN + hcp-Cr₂N to the approximately stoichiometric hcp-Cr₂N phase with increasing substrate bias confirmed by wavelength-dispersive X-ray spectroscopy (WDS). The texture coefficients of (113), (110), and (111) planes vary significantly with increasing substrate bias voltage. The hydrogen permeability was measured by gas-phase hydrogenation. The CrN coating deposited at 60 V with mixed c-CrN and (113) textured hcp-Cr₂N phases exhibits the lowest hydrogen absorption at 873 K. It is suggested that the crystal orientation is only one parameter influencing the permeation resistance of the CrNx coating together with the film structure, the presence of mixing phases, and the packing density of the structure. After hydrogenation, the hardness increased for all coatings, which could be related to the formation of a Cr₂O₃ oxide film on the surface, as well as the defect formation after hydrogen loading. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient by up to 40%. The lowest value of 0.25 ± 0.02 was reached for the CrNₓ coating deposited at 60 V after hydrogenation.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Egor B. Kashkarov, Aleksei ObrosovORCiD, Alina Sutygina, Elena Uludintceva, Andrei Mitrofanov, Sabine WeißORCiDGND
URL:http://www.mdpi.com/2079-6412/8/2/66/htm
DOI:https://doi.org/10.3390/coatings8020066
ISSN:2079-6412
Title of the source (English):Coatings
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2018
Tag:CrNx coatings; Physical Vapour Deposition (PVD); X-ray diffraction; hydrogenation; mechanical properties; tribology
Volume/Year:8
Issue number:2
Number of pages:12
Comment:
Special Issue "Surface Preparation and Treatments for Enhancing the Coating Performance"
Article number:ID 66
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.