• search hit 1 of 4
Back to Result List

Effect of HPPMS pulse-frequency on plasma discharge and deposited AlTiN coating properties

  • Coatings like TiAlN (titanium content more than 50 %) or AlTiN (aluminium content more than 50 %) are well established as hard and wear resistant tool coatings, often prepared by physical vapour deposition (PVD) like arc evaporation or direct current magnetron sputtering (dcMS). With increasing challenges of operating conditions, a constant need in improvement of mechanical properties is required to withstand extreme loading conditions. This can be obtained by a higher amount of ionized sputtered metal atoms during the deposition process. To increase the metal-ion flux a high-power pulse magnetron sputtering (HPPMS) was developed. In order to understand the relation between HPPMS process parameters and mechanical properties of the AlTiN coatings, the present study discusses how different pulse frequencies (for a constant pulse length) influence AlTiN coating structure growth and their mechanical properties. In addition, film deposition rate and phase formation are influenced by altering process parameters like pulse length andCoatings like TiAlN (titanium content more than 50 %) or AlTiN (aluminium content more than 50 %) are well established as hard and wear resistant tool coatings, often prepared by physical vapour deposition (PVD) like arc evaporation or direct current magnetron sputtering (dcMS). With increasing challenges of operating conditions, a constant need in improvement of mechanical properties is required to withstand extreme loading conditions. This can be obtained by a higher amount of ionized sputtered metal atoms during the deposition process. To increase the metal-ion flux a high-power pulse magnetron sputtering (HPPMS) was developed. In order to understand the relation between HPPMS process parameters and mechanical properties of the AlTiN coatings, the present study discusses how different pulse frequencies (for a constant pulse length) influence AlTiN coating structure growth and their mechanical properties. In addition, film deposition rate and phase formation are influenced by altering process parameters like pulse length and frequency. Hence, different pulse-frequencies produce specific coatings with corresponding properties for functional requirements. Based on the established findings, answers to new scientific queries along with the demand to further optimize these coatings for tool applications are required.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Stefanie Severin, Muhammad Naveed, Sabine WeißORCiDGND
ISSN:1687-8442
Title of the source (English):Advances in Materials Science and Engineering
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:High power pulsed magnetron sputtering; Mechanical properties; Nanostructured AlTiN coatings; Pulse frequency
Volume/Year:2017
Number of pages:18
Article number:ID 4850908
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.