• search hit 3 of 5
Back to Result List

Electrocatalytic Sensor for Hydrogen Peroxide Based on Immobilized Benzoquinone

  • An amperometric chemosensor for the detection of hydrogen peroxide is reported. The sensor is based on 1,4-benzoquinone immobilized on the gold electrode using self-assembled monolayer of short chain symmetrical dithiol as an anchor layer. Sensor analysis was performed by cyclic voltammetry at the potential range from −0.6 V till +0.9 V as well as in the anodic or cathodic potential ranges only. The results indicate oxidative electrochemical decomposition of hydrogen peroxide at the potential of ∼+0.4 V leading to the formation of oxygen while at cathodic potentials a reduction of the formed oxygen as well as of the hydrogen peroxide occur. A decrease in the oxidation potential of hydrogen peroxide on the gold electrode coated by self-assembled monolayer with 1,4-benzoquinone in comparison with that measured on the electrodes coated by the same self-assembled monolayer without 1,4-benzoquinone, indicates electrocatalytic effect of this moiety on oxidative decomposition of hydrogen peroxide. Analytical evaluation of the sensorAn amperometric chemosensor for the detection of hydrogen peroxide is reported. The sensor is based on 1,4-benzoquinone immobilized on the gold electrode using self-assembled monolayer of short chain symmetrical dithiol as an anchor layer. Sensor analysis was performed by cyclic voltammetry at the potential range from −0.6 V till +0.9 V as well as in the anodic or cathodic potential ranges only. The results indicate oxidative electrochemical decomposition of hydrogen peroxide at the potential of ∼+0.4 V leading to the formation of oxygen while at cathodic potentials a reduction of the formed oxygen as well as of the hydrogen peroxide occur. A decrease in the oxidation potential of hydrogen peroxide on the gold electrode coated by self-assembled monolayer with 1,4-benzoquinone in comparison with that measured on the electrodes coated by the same self-assembled monolayer without 1,4-benzoquinone, indicates electrocatalytic effect of this moiety on oxidative decomposition of hydrogen peroxide. Analytical evaluation of the sensor performance was done in the voltammetric as well as in the chronoamperometric mode. The sensor exhibited linear response over the concentration range till 2.5 mM with a limit of detection ∼4 μM.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Arwa LaroussiORCiD, Noureddine RaouafiORCiD, Vladimir M. MirskyORCiDGND
DOI:https://doi.org/10.1002/elan.202100113
ISSN:1521-4109
Title of the source (English):Electroanalysis
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2021
Tag:Benzoquinone; Chemical sensor; Electrocatalysis; Hydrogen peroxide; Self-assembled monolaye
Volume/Year:33
Issue number:9
First Page:2062
Last Page:2070
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Nanobiotechnologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.