• search hit 1 of 5
Back to Result List

Electrically controlled Michael addition: Addressing of covalent immobilization of biological receptors

  • Electrically addressed covalent immobilization of biomolecules to the defined electrodes of an electrode array is described. It is based on Michael addition of the thiol group of biomolecules to α,β-unsaturated carbonyl groups of benzoquinone. This “click” reaction was tested by immobilization of a number of thiolated compounds on the simplest array consisting of two gold electrodes coated by a self-assembled monolayer of benzoquinone-terminated hexanethiol. Electrically controlled binding of hexanethiol, ferrocenylhexanethiol, human serum albumin and thiol-terminated single-stranded DNA (ssDNA) was investigated. The binding was studied using cyclic voltammetry, X-ray photoelectron spectroscopy and surface plasmon resonance. The reaction requires the oxidized state of the benzoquinone moiety; this can be reached by applying of a moderate anodic potential to the electrode. Surface plasmon resonance measurements demonstrated that the thiol-modified ssDNA immobilized by this technique binds complementary synthetic oligonucleotides orElectrically addressed covalent immobilization of biomolecules to the defined electrodes of an electrode array is described. It is based on Michael addition of the thiol group of biomolecules to α,β-unsaturated carbonyl groups of benzoquinone. This “click” reaction was tested by immobilization of a number of thiolated compounds on the simplest array consisting of two gold electrodes coated by a self-assembled monolayer of benzoquinone-terminated hexanethiol. Electrically controlled binding of hexanethiol, ferrocenylhexanethiol, human serum albumin and thiol-terminated single-stranded DNA (ssDNA) was investigated. The binding was studied using cyclic voltammetry, X-ray photoelectron spectroscopy and surface plasmon resonance. The reaction requires the oxidized state of the benzoquinone moiety; this can be reached by applying of a moderate anodic potential to the electrode. Surface plasmon resonance measurements demonstrated that the thiol-modified ssDNA immobilized by this technique binds complementary synthetic oligonucleotides or PCR-amplified DNA fragments. The developed technology of electrical addressing of covalent immobilization can be applied for fabrication of sensor arrays.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Asma Hammami, Noureddine RaouafiORCiD, Vladimir M. MirskyORCiDGND
DOI:https://doi.org/10.1016/j.bios.2018.08.044
ISSN:1873-4235
ISSN:0956-5663
Title of the source (English):Biosensors and Bioelectronics
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2018
Tag:Self-assembled monolayer Immobilization of biomolecules Addressable immobilization Michael addition Cyclic voltammetry Surface plasmon resonance
Volume/Year:121
First Page:72
Last Page:79
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Nanobiotechnologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.