• search hit 8 of 12
Back to Result List

Substrate Frequency Effects on CrxN Coatings Deposited by DC Magnetron Sputtering

  • Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (CrxN) coatings at various substrate bias frequencies are discussed. CrxN coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of CrxN coatings with the substrate bias frequency increase.Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (CrxN) coatings at various substrate bias frequencies are discussed. CrxN coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of CrxN coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Aleksei ObrosovORCiD, Muhammad Naveed, Alex A. Volinsky, Sabine WeißORCiDGND
URL:http://link.springer.com/article/10.1007/s11665-016-2426-4
DOI:https://doi.org/10.1007/s11665-016-2426-4
ISSN:1544-1024
Title of the source (English):Journal of Materials Engineering and Performance
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2016
Tag:CrN coatings; PVD; X-ray diffraction; adhesion of coatings; frequency; mechanical properties; microstructure
Volume/Year:26
Issue number:1
First Page:366
Last Page:373
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.