In situ X-ray photoelectron spectroscopy study of atomic layer deposited ceria on SiO2: substrate influence on the reaction mechanism during the early stages of growth

  • Atomic layer deposition (ALD) is known to produce amorphous and defect-rich films in a layer-by-layer fashion, which can potentially give rise to unexpected material properties. In particular, ultrathin films (few monolayers) will show the highest complexity, as the substrate-material interaction will play a major role during deposition. Therefore, it is crucial to understand the early stages of growth of the ALD process to control and potentially tailor this interfacial interaction. Applying a surface science approach combined with complementary ex-situ characterization, we have studied by in-situ X-ray photoelectron spectroscopy (XPS) the early stages of ceria (CeOx) growth on SiO2 substrates deposited by thermal-ALD using Ce(thd)4/O3. Interestingly, an initial mixture of Ce3+ and Ce4+ was observed, although only Ce4+ may be expected considering the used precursor and oxidant. This fact, together with a deviation from the ideal layer-by-layer growth and a higher growth rate during the first cycles, indicates a significant influenceAtomic layer deposition (ALD) is known to produce amorphous and defect-rich films in a layer-by-layer fashion, which can potentially give rise to unexpected material properties. In particular, ultrathin films (few monolayers) will show the highest complexity, as the substrate-material interaction will play a major role during deposition. Therefore, it is crucial to understand the early stages of growth of the ALD process to control and potentially tailor this interfacial interaction. Applying a surface science approach combined with complementary ex-situ characterization, we have studied by in-situ X-ray photoelectron spectroscopy (XPS) the early stages of ceria (CeOx) growth on SiO2 substrates deposited by thermal-ALD using Ce(thd)4/O3. Interestingly, an initial mixture of Ce3+ and Ce4+ was observed, although only Ce4+ may be expected considering the used precursor and oxidant. This fact, together with a deviation from the ideal layer-by-layer growth and a higher growth rate during the first cycles, indicates a significant influence of the substrate of the ALD reaction mechanism as well as a correlation between morphology and ceria oxidation state.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Max Gertig, Carlos MoralesORCiD, Karsten HenkelORCiDGND, Jan Ingo FlegeORCiD
URL:https://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/o/session/67/contribution/7
ISSN:0420-0195
Title of the source (English):Verhandlungen der DPG
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference publication not peer-reviewed
Language:English
Year of publication:2024
Tag:Atomic layer deposition (ALD); X-ray photoelectron spectroscopy (XPS); ceria; in-situ
Series ; volume number:Verhandlungen der DPG
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.