Biotribocorrosion behaviour of newly developed nanostructured near β-types Titanium based Alloys for Biomedical Applications

  • The biotribocorrosion behavior of newly developed nanocristalline near β-types Ti-15Nb and Ti-15Mo alloys surfaces, sintered by powder metallurgy and sequentially milled, has been investigated in SBF simulated body fluid (PBS solution) at OCP, an applied potential in the passive region and EIS. Reciprocating sliding tests using a ball-on-plate tribometer under differentes applied loads 3, 7 and 10 N load and anodic potentials were applied to evaluate the effect of applied lad and the effect of Nb and Mo elements on tribocorrosion behaviors of samples. Results showed that, Ti-Nb exhibited better anticorrosive properties than Ti-Mo. Under tribological action the nanostructured both of alloys showed similar friction coefficient, while Ti-Nb present lower tendency to corrosion compared to Ti-Mo. Furthermore, Nb diffusion increased the repassivation rate with respect to Ti-Mo surfaces due to its stable passive film. Due to the high chemical reaction rate in β-type Ti-15Mo alloy as compared to Ti-15Nb. The β- Ti-15Nb showed lower volumeThe biotribocorrosion behavior of newly developed nanocristalline near β-types Ti-15Nb and Ti-15Mo alloys surfaces, sintered by powder metallurgy and sequentially milled, has been investigated in SBF simulated body fluid (PBS solution) at OCP, an applied potential in the passive region and EIS. Reciprocating sliding tests using a ball-on-plate tribometer under differentes applied loads 3, 7 and 10 N load and anodic potentials were applied to evaluate the effect of applied lad and the effect of Nb and Mo elements on tribocorrosion behaviors of samples. Results showed that, Ti-Nb exhibited better anticorrosive properties than Ti-Mo. Under tribological action the nanostructured both of alloys showed similar friction coefficient, while Ti-Nb present lower tendency to corrosion compared to Ti-Mo. Furthermore, Nb diffusion increased the repassivation rate with respect to Ti-Mo surfaces due to its stable passive film. Due to the high chemical reaction rate in β-type Ti-15Mo alloy as compared to Ti-15Nb. The β- Ti-15Nb showed lower volume loss, lower friction coefficient values and exhibited better corrosion resistance during tribocorrosion tests than Ti-15Mo. Prevailing electrochemical conditions between -1 and 2 V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear. Also, wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys. However, considering biomedical applications, the β- Ti15 Mo and Ti15Nb alloys may be good candidates with low elastic modulus and without toxic alloying elements.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Mamoun Fellah, Naouel Hezil, Mohammed Abdul Samad, Alex Montagne, Stephania Kosman, Alberto Megias, Alain Iost, Aleksei ObrosovORCiD, Sabine WeißORCiDGND
URL:http://nanomat2019.org/wp-content/uploads/2019/04/Book-of-Abstracts-nanomath2019.pdf
Title of the source (English):nanoMAT2019 – 2nd International Conference on Nanomaterials and Their Applications
Document Type:Conference publication peer-reviewed
Language:English
Year of publication:2019
Tag:Biomedical Applications; Biotribocorrosion; titanium based alloys
First Page:170
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.