TY - CHAP A1 - Klein, Marten A1 - Tsai, Pei-Yun A1 - Schmidt, Heiko ED - Dillmann, Andreas ED - Heller, Gerd ED - Krämer, Ewald ED - Wagner, Claus ED - Weiss, Julien T1 - Stochastic Modeling and Large-Eddy Simulation of Heated Concentric Coaxial Pipes T2 - New Results in Numerical and Experimental Fluid Mechanics XIV, STAB/DGLR Symposium 2022 N2 - Turbulent concentric coaxial pipe flows are numerically investigated as canonical problem addressing spanwise curvature effects on heat and momentum transfer that are encountered in various engineering applications. It is demonstrated that the wall-adapting local eddy-viscosity (WALE) model within a large-eddy simulation (LES) framework, without model parameter recalibration, has limited predictive capabilities as signalized by poor representation of wall curvature effects and notable grid dependence. The identified lack in the modeling of radial transport processes is therefore addressed here by utilizing a stochastic one-dimensional turbulence (ODT) model. A standalone ODT formulation for cylindrical geometry is used in order to assess to which extent the predictability can be expected to improve by utilizing an advanced wall-modeling strategy. KW - Heat and mass transfer KW - Stochastic turbulence modeling KW - Spanwise curvature effects KW - Pipe flow Y1 - 2024 SN - 978-3-031-40482-5 SN - 978-3-031-40481-8 U6 - https://doi.org/10.1007/978-3-031-40482-5_41 SN - 1612-2909 SN - 1860-0824 N1 - This research is supported by the German Federal Government, the Federal Ministry of Education and Research and the State of Brandenburg within the framework of the joint project EIZ: Energy Innovation Center (project numbers 85056897 and 03SF0693A) with funds from the Structural Development Act (Strukturstärkungsgesetz) for coal-mining regions. M.K. acknowledges support by the BTU Graduate Research School (Conference Travel Grant). SP - 435 EP - 444 PB - Springer CY - Cham ER -