TY - GEN A1 - Samoylov, Anton V. A1 - Mirsky, Vladimir M. A1 - Hao, Qingli A1 - Swart, Claudia A1 - Shirshov, Yuri M. A1 - Wolfbeis, Otto S. T1 - Nanometer-thick SPR sensor for gaseous HCl T2 - Sensors and Actuators B: Chemical N2 - The optical properties of electrochemically polymerized N-methylaniline are changed in the presence of gaseous hydrogen chloride. This effect was used for preparation of chemical sensors with transduction based on surface plasmon resonance. The interaction of hydrogen chloride with a two nm layer of poly-(N-methylaniline) on gold leads to the shift of the surface plasmon resonance. The analysis of the resonance spectra demonstrates that the effect is caused by an increase of the imaginary component of the refractive index; a minor contribution is also provided by film condensation leading to an increase of the real component of the refractive index and a decrease in the thickness. The effect is selective and quasi-reversible. The concentration dependence of the gas effect obeys Langmuir's adsorption isotherm with a reciprocal value of the binding constant of 850 ± 160 ppm. KW - Gas sensor KW - HCI sensors KW - Surface plasmon resonance KW - Electropolymerization KW - Poly-(N-methyl-aniline) KW - Fire detector Y1 - 2005 U6 - https://doi.org/10.1016/j.snb.2004.08.029 SN - 0925-4005 VL - 106 IS - 1 SP - 369 EP - 372 ER - TY - GEN A1 - Lange, Ulrich A1 - Roznyatovskaya, Nataliya V. A1 - Mirsky, Vladimir M. T1 - Conducting polymers in chemical sensors and arrays (invited review) T2 - Analytica Chimica Acta N2 - The review covers main applications of conducting polymers in chemical sensors and biosensors. The first part is focused on intrinsic and induced receptor properties of conducting polymers, such as pH sensitivity, sensitivity to inorganic ions and organic molecules as well as sensitivity to gases. Induced receptor properties can be also formed by molecularly imprinted polymerization or by immobilization of biological receptors. Immobilization strategies are reviewed in the second part. The third part is focused on applications of conducting polymers as transducers and includes usual optical (fluorescence, SPR, etc.) and electrical (conductometric, amperometric, potentiometric, etc.) transducing techniques as well as organic chemosensitive semiconductor devices. An assembly of stable sensing structures requires strong binding of conducting polymers to solid supports. These aspects are discussed in the next part. Finally, an application of combinatorial synthesis and high-throughput analysis to the development and optimization of sensing materials is described. KW - Conducting polymers KW - Chemical sensors KW - Electroactive polymers KW - Gas sensors KW - Combinatorial techniques KW - Electropolymerization KW - Sensor array Y1 - 2008 U6 - https://doi.org/10.1016/j.aca.2008.02.068 SN - 0003-2670 VL - 614 IS - 1 SP - 1 EP - 26 ER - TY - GEN A1 - Hao, Qingli A1 - Kulikov, Valentin A1 - Mirsky, Vladimir M. T1 - Investigation of contact and bulk resistance of conductive polymers by simultaneous two- and four-point technique T2 - Sensors and Actuators B: Chemical N2 - A conventional resistance measured by two-point technique includes bulk and contact components. The contact resistance can be excluded by a four-point technique. A simultaneous use of the two- and four-point techniques allows to separate the total resistance between two electrodes for the contact and bulk parts. This approach has been used to analyze electrical coupling between metal electrodes of interdigitated structures and chemically sensitive coating formed by polyaniline (PANI). The polymer layers were deposited by electropolymerization on bare gold and platinum electrodes as well as on gold electrodes precoated by a self-assembled monolayer of 4-aminothiophenol. An exposure of the PANI films formed on interdigitated structures to gaseous HCl displays proportional changes of resistance measured by the two- and four- point techniques for platinum electrodes and for the precoated gold electrode, while a strong deviation from this proportionality was observed for the gold electrodes without precoating. The results demonstrate a high contribution of the contact resistance between PANI and bare gold electrodes into the resistance measured by the two-point technique. This contribution is small and therefore not measurable for bare platinum electrodes or for gold electrodes coated by 4-aminothiophenol. KW - Chemoresistor KW - Conductometric chemosensor KW - Electropolymerization KW - Four-point technique KW - Gas sensor Y1 - 2003 U6 - https://doi.org/10.1016/S0925-4005(03)00456-8 SN - 0925-4005 VL - 94 IS - 3 SP - 352 EP - 357 ER -