TY - GEN A1 - Borcia, Ion-Dan A1 - Richter, Sebastian A1 - Borcia, Rodica A1 - Schön, Franz-Theo A1 - Harlander, Uwe A1 - Bestehorn, Michael T1 - Wave propagation in a circular channel: sloshing and resonance T2 - The European Physical Journal Special Topics N2 - Surface wave resonance of a liquid (water) layer confined in a circular channel is studied both experimentally and numerically. For the experiment, eight unevenly distributed ultrasonic distance sensors measure the local height of the wave surface. The resonance curves show maxima only for odd multiples of the fundamental resonance frequency . We explained this behavior using a simple intuitive “ping-pong” like model. Collision of wave fronts can be observed for higher frequencies. Also, the wave reflection on the walls can be treated as wave collision with itself. The non-linearity seems to be weak in our study so the delay in the wave propagation before and after the collision is small. Time-space plots show localized propagating waves with high amplitudes for frequencies near resonance. Between the peaks low amplitude and harmonic patterns are observed. However, for higher frequencies, the frequency band for localized waves becomes wider. In the Fourier space-time plane, this can be observed as a point for the harmonic patterns or a superposition of two lines: one line parallel to wave-vector k axis corresponding to the excitation frequency and a second line with inclination given by wave propagation velocity . For planned future work, this result will help us to reconstruct the whole water surface elevation using time-series from only a few measurement points Y1 - 2023 UR - https://link.springer.com/article/10.1140/epjs/s11734-023-00790-z U6 - https://doi.org/10.1140/epjs/s11734-023-00790-z SN - 1951-6401 SN - 1951-6355 VL - Vol. 232 IS - 4 SP - 461 EP - 468 ER - TY - GEN A1 - Harlander, Uwe A1 - Sukhanovskii, Andrei A1 - Abide, Stéphane A1 - Borcia, Ion-Dan A1 - Popova, Elene A1 - Rodda, Costanza A1 - Vasiliev, Andrei A1 - Vincze, Miklos T1 - New Laboratory Experiments to Study the Large-Scale Circulation and Climate Dynamics T2 - Atmosphere N2 - The large-scale flows of the oceans and the atmosphere are driven by a non-uniform surface heating over latitude, and rotation. For many years scientists try to understand these flows by doing laboratory experiments. In the present paper we discuss two rather new laboratory experiments designed to study certain aspects of the atmospheric circulation. One of the experiments, the differentially heated rotating annulus at the Brandenburg University of Technology (BTU) Cottbus, has a cooled inner cylinder and a heated outer wall. However, the structure of the atmospheric meridional circulation motivates a variation of this “classical” design. In the second experiment described, operational at the Institute of Continuous Media Mechanics (ICMM) in Perm, heating and cooling is performed at different vertical levels that resembles more the atmospheric situation. Recent results of both experiments are presented and discussed. Differences and consistencies are highlighted. Though many issues are still open we conclude that both setups have their merits. The variation with heating and cooling at different levels might be more suited to study processes in the transition zone between pure rotating convection and the zone of westerly winds. On the other hand, the simpler boundary conditions of the BTU experiment make this experiment easier to control. Y1 - 2023 UR - https://www.mdpi.com/2073-4433/14/5/836 U6 - https://doi.org/10.3390/atmos14050836 VL - 14 IS - 5 ER -