TY - GEN A1 - Akay, Ömer A1 - Bashkatov, Aleksandr A1 - Coy, Emerson A1 - Eckert, Kerstin A1 - Einarsrud, Kristian Etienne A1 - Friedrich, Andreas A1 - Kimmel, Benjamin A1 - Loos, Stefan A1 - Mutschke, Gerd A1 - Röntzsch, Lars A1 - Symes, Mark D. A1 - Yang, Xuegeng A1 - Brinkert, Katharina T1 - Electrolysis in reduced gravitational environments: current research perspectives and future applications T2 - npj Microgravity N2 - Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined. KW - Elektrolyse KW - electrolysis Y1 - 2022 UR - https://www.nature.com/articles/s41526-022-00239-y#citeas U6 - https://doi.org/10.1038/s41526-022-00239-y SN - 2373-8065 VL - 8 ER -