TY - GEN A1 - Zaumseil, Peter A1 - Yamamoto, Yuji A1 - Schubert, Markus Andreas A1 - Schröder, Thomas A1 - Tillack, Bernd T1 - Heteroepitaxial Growth of Ge on compliant strained nano-structured Si lines and dots on (001) SOI substrates T2 - Thin Solid Films Y1 - 2014 SN - 0040-6090 VL - 557 SP - 50 EP - 54 ER - TY - GEN A1 - Uhlmann, Max A1 - Pérez-Bosch Quesada, Emilio A1 - Fritscher, Markus A1 - Pérez, Eduardo A1 - Schubert, Markus Andreas A1 - Reichenbach, Marc A1 - Ostrovskyy, Philip A1 - Wenger, Christian A1 - Kahmen, Gerhard T1 - One-Transistor-Multiple-RRAM Cells for Energy-Efficient In-Memory Computing T2 - 21st IEEE Interregional NEWCAS Conference (NEWCAS) N2 - The use of resistive random-access memory (RRAM) for in-memory computing (IMC) architectures has significantly improved the energy-efficiency of artificial neural networks (ANN) over the past years. Current RRAM-technologies are physically limited to a defined unambiguously distinguishable number of stable states and a maximum resistive value and are compatible with present complementary metal-oxide semiconductor (CMOS)-technologies. In this work, we improved the accuracy of current ANN models by using increased weight resolutions of memristive devices, combining two or more in-series RRAM cells, integrated in the back end of line (BEOL) of the CMOS process. Based on system level simulations, 1T2R devices were fabricated in IHP's 130nm SiGe:BiCMOS technology node, demonstrating an increased number of states. We achieved an increase in weight resolution from 3 bit in ITIR cells to 6.5 bit in our 1T2R cell. The experimental data of 1T2R devices gives indications for the performance and energy-efficiency improvement in ITNR arrays for ANN applications. KW - RRAM KW - In-Memory Computing Y1 - 2023 SN - 979-8-3503-0024-6 SN - 979-8-3503-0025-3 U6 - https://doi.org/10.1109/NEWCAS57931.2023.10198073 SN - 2474-9672 SN - 2472-467X PB - Institute of Electrical and Electronics Engineers (IEEE) ER - TY - CHAP A1 - Wen, Jianan A1 - Vargas, Fabian Luis A1 - Zhu, Fukun A1 - Reiser, Daniel A1 - Baroni, Andrea A1 - Fritscher, Markus A1 - Perez, Eduardo A1 - Reichenbach, Marc A1 - Wenger, Christian A1 - Krstic, Milos T1 - Cycle-Accurate FPGA Emulation of RRAM Crossbar Array: Efficient Device and Variability Modeling with Energy Consumption Assessment T2 - 2024 IEEE 25th Latin American Test Symposium (LATS) N2 - Emerging device technologies such as resistive RAM (RRAM) are increasingly recognized in enhancing system performance, particularly in applications demanding extensive vector-matrix multiplications (VMMs) with high parallelism. However, a significant limitation in current electronics design automation (EDA) tools is their lack of support for rapid prototyping, design space exploration, and the integration of inherent process-dependent device variability into system-level simulations, which is essential for assessing system reliability. To address this gap, we introduce a field-programmable gate array (FPGA) based emulation approach for RRAM crossbars featuring cycle-accurate emulations in real time without relying on complex device models. Our approach is based on pre-generated look-up tables (LUTs) to accurately represent the RRAM device behavior. To efficiently model the device variability at the system level, we propose using the multivariate kernel density estimation (KDE) method to augment the measured RRAM data. The proposed emulator allows precise latency determination for matrix mapping and computation operations. Meanwhile, by coupling with the NeuroSim framework, the corresponding energy consumption can be estimated. In addition to facilitating a range of in-depth system assessments, experimental results suggest a remarkable reduction of emulation time compared to the classic behavioral simulation. KW - RRAM Y1 - 2024 U6 - https://doi.org/10.1109/LATS62223.2024.10534601 PB - IEEE ER -