TY - GEN A1 - Kanzler, Michael A1 - Böhm, Christian A1 - Freese, Dirk T1 - Impact of P fertilisation on the growth performance of black locust (Robinia pseudoacacia L.) in a lignite post-mining area in Germany T2 - Annals of Forest Research N2 - Due to its ability to grow on marginal sites black locust (Robinia pseudoacacia L.) has been widely planted as a short rotation coppice (SRC) system that produce a renewable biomass feedstock in several post-mining areas of East Germany. However, as most of these sites are still in an initial stage of reclamation with low humus and nutrient contents, phosphorous can play a significant role as a plant limiting factor, because legumes require more P than other plants for their development. In April 2011, two experiments were conducted to evaluate the influence of higher rates and different applications of phosphorus fertiliser on the nutrition, survival, and biomass production of two different-aged black locust SRC plantations on the post lignite-mining site “Welzow-Süd”, situated in NE Germany. Treatments were applied as triple superphosphate (30, 60 and 120 kg P ha-1) and PK fertiliser (60 kg P ha-1) through broadcasting or banding on recently harvested or planted trees, respectively. Soil, leaf and woody biomass data were analysed utilising the Mann-Whitney U test and the Spearman correlation coefficient (rS). Following two growing seasons, it was observed that the total dry weight yields of the black locust seedlings were increased strongly by up to 8 times when compared to the control group, particularly when TSP was applied through banding. P fertilisation, however, did not affect the biomass yield of six-year-old black locust trees, but P concentration in leaves among treatments of both sites was still significantly increased and sufficient from a quantity upwards of 60 kg P ha-1. Taken together, a comparably moderate amount of P fertiliser (60 kg ha-1) had a strong impact on P uptake and growth performance in the examined black locust seedlings, which reveals a high potential to improve the current fertilisation practices for SRC black locust plantations grown on our research site. Y1 - 2015 U6 - https://doi.org/10.15287/afr.2015.303 VL - 58 IS - 1 SP - 39 EP - 54 ER - TY - GEN A1 - Gypser, Stella A1 - Veste, Maik A1 - Fischer, Thomas A1 - Lange, Philipp T1 - Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany T2 - Journal of hydrology and hydromechanics N2 - Investigations were done on two former open-cast lignite mining sites under reclamation, an artificial sand dune in Welzow Süd, and a forest plantation in Schlabendorf Süd (Brandenburg, Germany). The aim was to associate the topsoil hydrological characteristics of green algae dominated as well as moss and soil lichen dominated biological soil crusts during crustal succession with their water retention and the repellency index on sandy soils under temperate cli-mate and different reliefs. The investigation of the repellency index showed on the one hand an increase due to the cross-linking of sand parti-cles by green algae which resulted in clogging of pores. On the other hand, the occurrence of moss plants led to a de-crease of the repellency index due to absorption caused by bryophytes. The determination of the water retention curves showed an increase of the water holding capacity, especially in conjunction with the growth of green algae layer. The pore-related van Genuchten parameter indicate a clay-like behaviour of the developed soil crusts. Because of the inho-mogeneous distribution of lichens and mosses as well as the varying thickness of green algae layers, the water retention differed between the study sites and between samples of similar developmental stages. However, similar tendencies of water retention and water repellency related to the soil crust formation were observed. Biological soil crusts should be considered after disturbances in the context of reclamation measures, because the ini-tial development of green algae biocrusts lead to an increasing repellency index, while the occurrence of mosses and a gain in organic matter enhance the water holding capacity. Thus, the succession of biocrusts and their small-scale succes-sion promote the development of soil and ecosystem. Y1 - 2016 U6 - https://doi.org/10.1515/johh-2016-0009 VL - 64 IS - 1 SP - 1 EP - 11 ER - TY - GEN A1 - Kwak, Jin-Hyeob A1 - Chang, Scott X. A1 - Naeth, M. Anne A1 - Schaaf, Wolfgang T1 - Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils T2 - PLoS One N2 - Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0143857 SN - 1932-6203 VL - 10 SP - 0143857 ER - TY - GEN A1 - Mantovani, Dario A1 - Veste, Maik A1 - Gypser, Stella A1 - Halke, Christian A1 - Koning, Laurie Anne A1 - Freese, Dirk A1 - Lebzien, Stefan T1 - Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients T2 - Journal of Hydrology and Hydromechanics N2 - Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis), which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100%) and nitrogen fertilization (0, 50, 100, 150 kg N ha–1). Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m–2 s–1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m–2 s–1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed) and 141 l (well-watered) per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg–1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop. Y1 - 2014 U6 - https://doi.org/10.2478/johh-2014-0028 SN - 0042-790X VL - 62 IS - 4 SP - 316 EP - 323 ER - TY - GEN A1 - Koning, Laurie Anne A1 - Veste, Maik A1 - Freese, Dirk A1 - Lebzien, Stefan T1 - Effects of nitrogen and phsphate fertilization on leaf nutrient content, photosythesis, and growth of the novel bioenergy crop Fallopia schalinensis vc. 'Igniscum Candy' T2 - Journal of Applied Botany and Food Quality N2 - The aim of the study was to determine the effects of nitrogen and phosphate fertilization on the growth performance of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy’ (Polygonaceae). In a controlled pot experiment various nitrogen (0, 50, 150, 300 kg N ha-1) and phosphate (20, 40, 80 kg P ha-1) fertilizer amounts were applied to measure the effect on the biomass, plant height, leaf area, and leaf nutrient (N and P) content. Furthermore, the ecophysiological processes of chlorophyll content, chlorophyll fluorescence, and gas exchange were measured. The application of nitrogen correlated positively with biomass production, while phosphate fertilization did not show a significant effect on plant growth or ecophysiological parameters. The leaf nitrogen contents were significantly correlated with the nitrogen applications, while the leaf phosphate contents did not show a correlation with the P fertilizations, but increased with the leaf nitrogen contents. A significant linear correlation between N-Tester chlorophyll meter values and chlorophyll contents as well as with leaf nitrogen contents could be determined. Under the influence of the nitrogen fertilization, net photosynthesis increased from 3.7 to 6.6 μmol m-2 s-1. The results of this experiment demonstrated that nitrogen fertilization has an overall positive correlation with leaf nitrogen content, photosynthesis, and growth of the bioenergy crop Fallopia sachalinensis var. Igniscum Candy. Y1 - 2015 U6 - https://doi.org/10.5073/JABFQ.2015.088.005 SN - 1439-040X VL - 88 SP - 22 EP - 28 ER - TY - GEN A1 - Veste, Maik A1 - Todt, Henning A1 - Breckle, Siegmar-W. T1 - Influence of halophytic hosts on their parasites - the case of Plicosepalus acaciae T2 - AOB Plants N2 - Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different host–parasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na+ and Cl2. Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Host–parasite associations are a model systemfor the investigation of halophytes under different salt stress conditions. Y1 - 2015 U6 - https://doi.org/10.1093/aobpla/plu084 SN - 2041-2851 VL - 7 SP - plu084 ER - TY - GEN A1 - Mantovani, Dario A1 - Veste, Maik A1 - Freese, Dirk T1 - Effects of Drought Frequency on Growth Performance and Transpiration of Young Black Locust (Robinia pseudoacacia L.) T2 - International Journal of Forestry Research N2 - Black locust (Robinia pseudoacacia L.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land. Y1 - 2014 U6 - https://doi.org/10.1155/2014/821891 SN - 1687-9376 N1 - Article ID 821891 ER - TY - GEN A1 - Veste, Maik T1 - Bioenergie aus Wüstenpflanzen T2 - Naturwissenschaftliche Rundschau Y1 - 2014 SN - 0028-1050 VL - 67 IS - 2 SP - 80 EP - 81 ER - TY - GEN A1 - Gypser, Stella A1 - Herppich, Werner B. A1 - Fischer, Thomas A1 - Lange, Philipp A1 - Veste, Maik T1 - Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany T2 - Flora N2 - Following surface disturbance, quaternary sands are the basic substrate for soil development in the Lusatian reclamation area. These substrates mostly contain few organic matter and, hence, are nutrient poor. Accumulation of soil carbon is an important factor for ecosystem development, where biological soil crusts initially influence soil processes and promote ecosystem succession. The compositional structures of biological soil crusts at various developmental stages and their photosynthetic properties were investigated on two former open-cast lignite sites, currently under reclamation, an artificial sand dune in Welzow Süd, and a forest plantation in Schlabendorf Süd (Brandenburg, Germany). As development of biological soil crusts progressed, their contents of organic carbon and total chlorophyll increased. The ratio of these parameters, however, varied with the relative contribution of lichens and mosses in particular. Also maximum photochemical efficiency, net photosynthesis and respiration increased with crustal development. An additional evaluation of NDVI and chlorophyll fluorescence images showed that especially moss-dominated biocrusts had higher photosynthetic capacity compared to green algae-dominated biocrusts or soil lichens, so the photosynthetic capacity showed to be highly species-specific. The ratio of gross photosynthesis to respiration indicated a higher ecological efficiency of biocrusts dominated by green algae than of lichen-dominated biocrusts. The occurrence of soil lichens reduced net CO2 fixation and increased CO2 release due to the enhanced mycobiontic respiration. During crustal succession, the rise of photosynthesis-related parameters is not necessarily linear as a result of the highly heterogenic distribution of the different crustal organisms between biocrusts of similar developmental stages as well as between those growing at the two study sites. Therefore, the evaluation of relevant ecophysiological parameters highlighted that not all biocrust-forming organisms similarly contribute to the ecophysiological behavior of biological soil crusts. Nevertheless, the occurrence of the biological soil crusts promoted soil formation and accumulation of soil carbon in initial soils. Y1 - 2016 U6 - https://doi.org/10.1016/j.flora.2016.02.012 SN - 0367-2530 VL - Vol. 220 SP - 103 EP - 116 ER - TY - GEN A1 - Mantovani, Dario A1 - Veste, Maik A1 - Böhm, Christian A1 - Vignudelli, Marco A1 - Freese, Dirk T1 - Spatial and temporal variation of drought impact on black locust (Robinia pseudoacacia L.) water status and growth T2 - iForest Biogeosciences and Forestry N2 - Stimulated by the rising demand for bioenergy, forestry practices for energy production are of increasing importance worldwide. Black locust (Robinia pseudoacacia L.) is a suitable tree species for biomass production in shortrotation plantations in East Germany, especially on marginal land where insufficient water and nutrients are a limiting factor for tree growth. Our study aims to clarify the spatial and temporal variability of the black locust growth through the analysis of the plant water status, and to evaluate the effect of adverse edaphic conditions on growth performances, amplified by periods of summer drought. The study was carried out at two sites presenting comparable climatic but different edaphic conditions: (i) fertile agricultural soil; and (ii) heterogeneous unstructured soil from a reclaimed post-mining area. During the vegetation period, the growth rate decreased in both sites following the plant water status in terms of pre-dawn leaf water potential. Particularly in the post-mining area, due to the adverse edaphic conditions, below the critical pre-dawn water potential value of -0.5 MPa, the stem growth was drastically reduced during a period of summer drought. However, the trees could cope with the extreme soil and weather conditions in the post-mining site without perishing. Y1 - 2015 U6 - https://doi.org/10.3832/ifor1299-008 SN - 1971-7458 VL - 8 SP - 743 EP - 747 ER - TY - GEN A1 - Mirck, Jaconette A1 - Zalesny, Ronald S., Jr. T1 - Mini-Review of Knowldege Gaps in Salt Tolerance of Plants Applied to Willows and Poplars T2 - International Journal of Phytoremediation N2 - Salt tolerance of agricultural crops has been studied since the 1940, but knowledge regarding salt tolerance of woody crops is still in its initial phase. Salt tolerance of agricultural crops has been expressed as the yield decrease due to a certain salt concentration within the root zone as compared to a non-saline control. The most well-known plant response curve to salinity has been a piece-wise linear regression relating crop yield to root zone salinity. This method used the hypothesis that crops tolerate salt up to a threshold after which their yield decreases approximately linearly. Critique to this method included its lack of sensitivity to dynamic factors such as weather conditions. As a result, other classification indices have been developed, but none is as well accepted as the threshold-slope model. In addition to a mini-review of the key salt tolerance studies, our objective was to classify salt tolerance levels of poplars and willows. Initial classification showed that salt tolerance of these genera ranged from sensitive to moderately tolerant. Y1 - 2015 U6 - https://doi.org/10.1080/15226514.2014.950414 SN - 1549-7879 VL - 17 IS - 7 SP - 640 EP - 650 ER - TY - GEN A1 - Gypser, Stella A1 - Veste, Maik A1 - Fischer, Thomas A1 - Lange, Philipp T1 - Formation of soil lichen crusts at reclaimed post-mining sites, Lower Lusatia, North-east Germany T2 - Graphis Scripta N2 - Biological soil crusts were investigated at reclaimed post-mining sites near Welzow and Schlabendorf in Lower Lusatia (Brandenburg, Germany). Various development stages from initial biological soil crusts built up by green algae, to more developed soil crusts with mosses, as well as moss-soil lichen crusts, were classified. The spatial-temporal dynamics during the development resulted in a moss-lichens cover with discrete patches of pioneer organisms like green algae in between. At the study sites, 13 species of terricolous lichens were identified. The formation of the biological soil crust is important for the accumulation of soil organic matter in the first millimeters of the topsoil of these pioneer ecosystems. A correlation between cryptogamic biomass and soil carbon content were found. Y1 - 2015 SN - 0901-7593 VL - 27 IS - 1-2 SP - 3 EP - 14 ER - TY - GEN A1 - Schaaf, Wolfgang A1 - Bens, Oliver A1 - Fischer, Anton A1 - Gerke, Horst H. A1 - Gerwin, Werner A1 - Grünewald, Uwe A1 - Holländer, Hartmut M. A1 - Kögel-Knabner, Ingrid A1 - Mutz, Michael A1 - Schloter, Michael A1 - Schulin, Rainer A1 - Veste, Maik A1 - Winter, Susanne A1 - Hüttl, Reinhard F. T1 - Patterns and processes of initial terrestrial-ecosystem development T2 - Journal of Plant Nutrition and Soil Science N2 - Ecosystems are characterized as complex systems with abiotic and biotic processes interacting between the various components that have evolved over long-term periods. Most ecosystem studies so far have been carried out in mature systems. Only limited knowledge exists on the very initial phase of ecosystem development. Concepts on the development of ecosystems are often based on assumptions and extrapolations with respect to structure–process interactions in the initial stage. To characterize the effect of this initial phase on structure and functioning of ecosystems in later stages, it is necessary to disentangle the close interaction of spatial and temporal patterns of ecosystem structural assemblages with processes of ecosystem development. The study of initial, less complex systems could help to better identify and characterize coupled patterns and processes. This paper gives an overview of concepts for the initial development of different ecosystem compartments and identifies open questions and research gaps. The artificial catchment site “Chicken Creek” is introduced as a new research approach to investigate these patterns and processes of initial ecosystem development under defined boundary conditions. This approach allows to integrate the relevant processes with related pattern and structure development over temporal and spatial scales and to derive thresholds and stages in state and functioning of ecosystems at the catchment level. KW - soils KW - pedogenesis KW - vegetation succession KW - microbial succession KW - artificial catchment Y1 - 2011 U6 - https://doi.org/10.1002/jpln.201000158 SN - 1522-2624 VL - 174 IS - 2 SP - 229 EP - 239 ER - TY - GEN A1 - Hüttl, Reinhard F. A1 - Gerwin, Werner A1 - Schaaf, Wolfgang A1 - Zaplata, Markus Klemens A1 - Hinz, Christoph T1 - A Critical Zone Observatory for detecting ecosystem transition: the constructed catchment Chicken Creek (Germany) T2 - Procedia Earth and Planetary Science N2 - The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for natural primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different co-evolving compartments. The catchment has been extensively instrumented since 2005. Data are recorded with a high spatial and temporal resolution and include hydrological, geomorphological, pedological, limnological as well as biological parameters in order to detect transition states of the ecosystem. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion of the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more apparent. As a result, different phases of ecosystem development have been distinguished. Y1 - 2014 U6 - https://doi.org/10.1016/j.proeps.2014.08.009 VL - 10 SP - 46 EP - 51 ER - TY - GEN A1 - Ulrich, Werner A1 - Zaplata, Markus Klemens A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton A1 - Soliveres, Santiago A1 - Gotelli, Nicholas J. T1 - Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession T2 - Oikos N2 - Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies. Y1 - 2016 U6 - https://doi.org/10.1111/oik.02658 VL - 125 IS - 5 SP - 698 EP - 707 ER - TY - GEN A1 - Ulrich, Werner A1 - Piwczynski, Marcin A1 - Zaplata, Markus Klemens A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton T1 - Soil conditions and phylogenetic relatedness influence total community trait space during early plant succession T2 - Journal of Plant Ecology N2 - The total space of traits covered by the members of plant communities is an important parameter of ecosystem functioning and complexity. We trace the variability of trait space during early plant succession and ask how trait space co-varies with phylogenetic community structure and soil conditions. Particularly, we are interested in the small-scale variability in trait space and the influence of biotic and abiotic filters. We use data on species richness and soil conditions from the first 7 years of initial succession of an artificial catchment in north-eastern Germany. Total functional attribute diversity serves as a proxy to total trait space. Total trait space steadily increased during succession. We observed high small-scale variability in total trait space that was positively correlated with species richness and phylogenetic segregation and negatively correlated with total plant cover. Trait space increased with soil carbonate content, while pH and the fraction of sandy material behaved indifferently. Our results indicate that during early succession, habitat filtering processes gain importance leading to a lesser increase in trait space than expected from the increase in species richness alone. Y1 - 2014 U6 - https://doi.org/10.1093/jpe/rtt048 VL - 7 IS - 4 SP - 321 EP - 329 ER - TY - GEN A1 - Gerwin, Werner A1 - Schaaf, Wolfgang A1 - Biemelt, Detlef A1 - Fischer, Anton A1 - Winter, Susanne A1 - Hüttl, Reinhard F. T1 - The artificial catchment "Chicken Creek" (Lusatia, Germany) - A landscape laboratory for interdisciplinary studies of initial ecosystem development T2 - Ecological Engineering Y1 - 2009 U6 - https://doi.org/10.1016/j.ecoleng.2009.09.003 SN - 0925-8574 VL - 35 IS - 12 SP - 1786 EP - 1796 ER - TY - GEN A1 - Mazur, Kai A1 - Schoenheinz, Dagmar A1 - Biemelt, Detlef A1 - Schaaf, D. A1 - Grünewald, Uwe T1 - Observation of hydrological processes and structures in the artificial Chicken Creek catchment T2 - Physics and Chemistry of the Earth Y1 - 2011 SN - 1873-5193 VL - 36 IS - 1-4 SP - 74 EP - 86 ER - TY - GEN A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Fischer, Anton A1 - Gerwin, Werner A1 - Nenov, Rossen A1 - Pretzsch, Hans A1 - Seifert, Stefan A1 - Winter, Susanne A1 - Zaplata, Markus Klemens T1 - Monitoring the formation of structures and patterns during initial development of an artificial catchment T2 - Environmental Monitoring and Assessment N2 - The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem. Therefore, intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, vegetation dynamics, water chemistry, and element budgets. During the first 5 years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover, and the unconsolidated sandy substrate. The transformation of the initial geosystem into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared with the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Long-term monitoring of initial ecosystems may provide important data and parameters on processes and the crucial role of spatial and temporal structures and patterns to solve these problems. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed, and defined boundary conditions. KW - ecosystem development Y1 - 2013 U6 - https://doi.org/10.1007/s10661-012-2998-x SN - 0167-6369 VL - Vol. 185 IS - 7 SP - 5965 EP - 5986 ER - TY - GEN A1 - Hüttl, Reinhard F. A1 - Gerwin, Werner A1 - Kögel-Knabner, Ingrid A1 - Schulin, Rainer A1 - Hinz, Christoph A1 - Subke, Jens-Arne T1 - Ecosystems in transition: interactions and feedbacks with an amphasis on the initial development T2 - Biogeosciences N2 - In this Special Issue of Biogeosciences on “Ecosystems in transition: Interactions and feedbacks with an emphasis on the initial development”, we bring together research on ecosystems undergoing state transitions, including artificially created and naturally formed sites, most of them in an initial stage of development. State transitions of an ecosystem may occur either when a formerly stable system state is disturbed or when a developing system gradually achieves new functions during succession. This special issue presents a collection of observational and experimental studies that focus on processes occurring during state transitions in the development of ecosystems and provide insights into the feedback mechanisms controlling them. These state transitions are studied at multiple scales, ranging from the pore scale to the catchment scale. The contributions collected in this issue can be divided into two main groups: (i) studies dealing with state transition occurring in initial ecosystems without active human interference, and (ii) studies dealing with active restoration of ecosystems after severe disturbances. Y1 - 2014 U6 - https://doi.org/doi:10.5194/bg-11-195-2014 VL - 11 SP - 195 EP - 200 ER -