TY - CHAP A1 - Rey Villazón, José Maria A1 - Berthold, Martin A1 - Kühhorn, Arnold T1 - Adaptive Flow Field Thermal Modeling Techniques for Turbine Rotor-Stator Cavities T2 - Proceedings of ASME Turbo Expo 2013, San Antonio, Texas, USA , June 3-7, 2013, Vol. 3C: Heat Transfer, Paper GT2013-94845 Y1 - 2013 UR - http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1776262 SN - 978-0-7918-5516-4 U6 - https://doi.org/10.1115/GT2013-94845 PB - ASME CY - New York ER - TY - THES A1 - Klauke, Thomas T1 - Schaufelschwingungen integraler, realer Verdichterräder im Hinblick auf Verstimmung und Lokalisierung KW - Schaufelschwingung KW - Verdichter KW - Flattern Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus-4081 ER - TY - CHAP A1 - Springmann, Marcel A1 - Scherzer, M. A1 - Kuna, M. A1 - Kühhorn, Arnold T1 - Numerical simulation of localization phenomena in the frame of damage parameter identification T2 - Seminar: Materials modeling, FE simulations of the behavior of modern industrial materials including failure, 5th - 6th December 2006, Niedernhausen (Wiesbaden), Germany Y1 - 2006 SN - 1-874376-19-0 PB - NAFEMS Contact Nordic Countries CY - Grafing b. München ER - TY - CHAP A1 - Keskin, Akin A1 - Kober, Markus A1 - Stelldinger, Enrico A1 - Kühhorn, Arnold A1 - Böhm, Holger A1 - Hornig, Andreas A1 - Hufenbach, Werner T1 - On the quantification of errors of a pre-processing effort reducing contact meshing approach : AIAA 2015-0408 T2 - 53rd AIAA Aerospace Sciences Meeting 2015, Kissimmee, Florida, USA, 5 - 9 January 2015, held at the AIAA SciTech Forum 2015, vol. 4 Y1 - 2015 SN - 978-1-5108-0117-2 U6 - https://doi.org/10.2514/6.2015-0408 SP - 3113 EP - 3124 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Rey Villazón, José Maria A1 - Wildow, Toni A1 - Kühhorn, Arnold A1 - Benton, Robert A1 - Eydam, Tobias T1 - Advanced Turbine Preliminary Design Environment for the automatic Generation of Secondary Air System Models T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7A: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - The design and development process of an aero engine is a complex and time-consuming task that involves many disciplines and company departments with different objectives and requirements. Along the preliminary design phase, multiple concepts are assessed in order to select a competitive technology. The engine design process, which was traditionally subdivided into modular component tasks, is nowadays considered as a multi-disciplinary workflow. Having recognized the need for developing advanced turbine preliminary design tools, this work focuses on enhancing the integration of turbine design disciplines, improving the accuracy of models and speeding the time to generate models. The proposed process facilitates an automated turbine Secondary Air System (SAS) and turbine discs concept definition. Furthermore, the process of CAD models and flow network models generation is accelerated via automation of the engineering workflow. This is accomplished through a novel Java based data model, where the design of turbine discs and SAS features is captured in a programmable framework. In the application section, the preliminary design definition of a reference HP turbine subsystem is replicated using the newly developed common design environment. The automated workflow is then used to generate the corresponding CAD models, recognize the subsystem flow network, and generate the 1D flow network model. The results are then compared to the experimentally validated model of a reference engine. As conclusion, the automated workflow offers a quick and parametric model generation process, while providing a good level of fidelity for the preliminary design phase. Copyright © 2015 by Rolls-Royce Deutschland Ltd & Co KG KW - Design KW - Turbines Y1 - 2015 SN - 978-0-7918-5676-5 U6 - https://doi.org/10.1115/GT2015-42661 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Wagner, Frank A1 - Kühhorn, Arnold T1 - Response surface based robust design optimization on the example of a high pressure turbine blade T2 - 8. Dresdner Probabilistik-Workshop, Technische Universität Dresden, 08.-09. Okt. 2015 N2 - Nowadays in a product design process the manufacturing tolerances have to be considered. Therefore a deterministic optimization needs to be converted into a robust design optimization. Usually the reference geometry is represented by a parametric model and an appropriate set of default parameters. In the robust design approach this set is replaced by a set of distributed parameters. These distributions are known from a previous design or needs to be estimated. This work is about a robust design and multi objective optimization of a high pressure turbine blade (first row) from an actual aero engine. The multidisciplinary objectives are the combined life of the aero-foil (LCF and creep) for the outer and inner geometry, the efficiency and the mass of the blade. For the input set different kinds of parameter will be examined. Apart from the major geometry parameters, which represent the external surface of the blade, parameters for material and boundary conditions will be investigated as well. The used workflow contains the Rolls-Royce tool parablading for the creation of the external aero-foil, Siemens NX for general geometry manipulation, Hydra as Navier-Stokes solver and SC03 for the structural problem and is set up in the automation software ISight. Focus of this work is the creation of response surfaces and physical integrity of the delivered results. Therefore, different validation criteria will be consulted. These are implemented in a Matlab toolbox and tested on typical optimization test problems. Based on the validated response surfaces a huge number of evaluations is possible, which is necessary for a robust design optimization. As the major result a set of Pareto optimal designs will be delivered. Y1 - 2015 UR - http://www.probabilistik.de/abstract/abstract_15_wagner.html UR - http://www.probabilistik.de/prog_15.html CY - Dresden ER - TY - CHAP A1 - Giersch, Thomas A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix T1 - Probabilistic Analysis of Low Engine Order Excitation Due to Geometric Perturbations of Upstream Nozzle Guide Vanes : ISABE-2015-20165 T2 - Conference Proceedings from the 22nd International Symposium on Air Breathing Engines, October 25-30, 2015, Phoenix, Arizona Y1 - 2015 UR - http://hdl.handle.net/2374.UC/745749 SP - 1 EP - 9 PB - ISABE ER - TY - CHAP A1 - Maywald, Thomas A1 - Beirow, Bernd A1 - Heinrich, Christoph Rocky A1 - Kühhorn, Arnold T1 - Vacuum Spin Test Series of a Turbine Impeller with Focus on Mistuning and Damping by Comparing Tip Timing and Strain Gauge Results T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7B: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - This paper describes preparation, execution and evaluation of a comprehensive bladed disk spin test series. At the example of an turbine impeller the effects of rotation and temperature are analyzed with special focus on mistuning and damping. The forced response is measured synchronously via 13 identical positioned strain gauges on each blade as well as via blade tip-timing. Subsequently it is possible to compare the results of both systems. During the test series rotational speed varies in the range from 10.000 up to 19.000 RPM. Simultaneously, the wheel is heated up to 820 K by an oven. A number of pre-selected natural frequencies, damping ratios and operating deflection shapes are evaluated and compared with respect to different rotational speeds and impeller temperatures. Copyright © 2015 by ASME KW - Rotation KW - Vacuum KW - Impellers KW - Damping KW - Turbines KW - Strain gages Y1 - 2015 SN - 978-0-7918-5677-2 U6 - https://doi.org/10.1115/GT2015-42649 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Wagner, Frank A1 - Kühhorn, Arnold A1 - Parchem, Roland T1 - Robust design optimization applied to a high pressure turbine blade based on surrogate modelling techniques T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7A: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - To achieve reverse objectives in engine design, advanced modelling and analysis methods are among the key research technologies. In the presented work, a robust design optimization of a first stage high pressure turbine blade has been carried out. This blade derives from a current production of a Rolls-Royce aero engine. The motivation of this work is to show that the methodology of robust design optimization can be applied to high pressure turbine blades. A fully automated workflow, which encapsulated the integral blade design and analysis process, has been used. The main workflow objective is a representative life value of the external surface of the blade. In addition, the workflow enables the engineering uses to consider sub objectives like mass, efficiency and life at critical locations of the blade. These can also be taken into account in the multi-objective robust design optimization. This research also focuses on the use of surrogate models, with attention to the delivery of a physically correct result. For this purpose, the validation of the applied methods has a huge significance and a toolbox was created to generate and evaluate the quality of the surrogate models. In the present case sixteen geometry parameters were considered. In order to show that this methodology is not limited to geometry variation, parameters for material specification and for boundary conditions were varied in addition. The surrogate model was trained by the workflow generated DoE-data and could be used for different kinds of optimization. As a conclusion, it has been demonstrated that the methodology can be used for the engineering design process of turbine blades, while delivering physically correct results. The different techniques for surrogate modelling were examined and compared. With the help of these surrogate models, an optimization of life, mass and efficiency with 22.5 million evaluations was possible. Finally, an overview of the methodology for the case of a real world turbine blade could be given, and an improved blade in the sense of multi-objective robust design was found. Copyright © 2015 by Rolls-Royce Deutschland Ltd & Co KG KW - Turbine blades KW - High pressure (Physics) KW - Design KW - Modeling KW - Optimization Y1 - 2015 SN - 978-0-7918-5676-5 U6 - https://doi.org/10.1115/GT2015-42365 ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Nipkau, Jens T1 - Effect of Mistuning and Damping on the Forced Response of a Compressor Blisk Rotor T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7A: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - The forced response of an E3E-type high pressure compressor blisk front rotor is analyzed with regard to intentional mistuning and its robustness towards additional random mistuning. Both a chosen alternating mistuning pattern and artificial mistuning patterns optimized concerning the forced response are considered. Focusing on three different blade modes, subset of nominal system mode-based reduced order models are employed to compute the forced response. The disk remains unchanged while the Young’s modulus of each blade is used to define the particular mistuning pattern. The well established aerodynamic influence coefficient technique is employed to model aeroelastic coupling and hence to consider the strongly mode- and inter blade phase angle-dependent aerodynamic damping contribution. It has been found that a reduction of the maximum forced response beyond that of the tuned reference can be achieved for particular mistuning patterns and all modes considered. This implies an exciting engine order which would cause a low nodal diameter mode in case of a tuned blisk. At best a nearly 50% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solution proved to be robust towards additional random mistuning of reasonable magnitude, which is of particular interest with regard to a potential technical realization. In case of small mistuning as assumed for the first torsion and the longitudinal bending mode the advantage of achieving response magnitudes beyond the tuned reference gets lost indeed, if random mistuning is superimposed. However, mostly a lower response level is calculated compared to responses obtained from models adjusted to mistuning determined by experiment. Copyright © 2015 by ASME KW - Compressors KW - Damping KW - Rotors Y1 - 2015 SN - 978-0-7918-5677-2 U6 - https://doi.org/10.1115/GT2015-42036 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold T1 - Analysis of Mistuned Blade Vibrations Based on Normally Distributed Blade Individual Natural Frequencies T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7B: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - With increasing demands for reliability of modern turbomachinery blades the quantification of uncertainty and its impact on the designed product has become an important part of the development process. This paper aims to contribute to an improved approximation of expected vibration amplitudes of a mistuned rotor assembly under certain assumptions on the probability distribution of the blade’s natural frequencies. A previously widely used lumped mass model is employed to represent the vibrational behavior of a cyclic symmetric structure. Aerodynamic coupling of the blades is considered based on the concept of influence coefficients leading to individual damping of the traveling wave modes. The natural frequencies of individual rotor blades are assumed to be normal distributed and the required variance could be estimated due to experiences with the applied manufacturing process. Under these conditions it is possible to derive the probability distribution of the off-diagonal terms in the mistuned equations of motions, that are responsible for the coupling of different circumferential modes. Knowing these distributions recent limits on the maximum attainable mistuned vibration amplitude are improved. The improvement is achieved due to the fact, that the maximum amplification depends on the mistuning strength. This improved limit can be used in the development process, as it could partly replace probabilistic studies with surrogate models of reduced order. The obtained results are verified with numerical simulations of the underlying structural model with random mistuning patterns based on a normal distribution of individual blade frequencies. Copyright © 2015 by ASME KW - Vibration KW - Blades Y1 - 2015 SN - 978-0-7918-5677-2 U6 - https://doi.org/10.1115/GT2015-43121 PB - ASME CY - New York, NY ER - TY - THES A1 - Beirow, Bernd T1 - Experimentelle und theoretische Untersuchungen des dynamischen Verhaltens von Fernmeldetürmen Y1 - 2000 PB - BTU, Lehrstuhl Statik und Dynamik CY - Cottbus ER - TY - CHAP A1 - Nouri, Behnam A1 - Lehmann, Knut A1 - Kühhorn, Arnold T1 - Investigations on Nusselt Number Enhancement in Ribbed Rectangular Turbine Blade Cooling Channels of Different Aspect Ratios and Rotation Numbers T2 - ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas, USA, June 3–7, 2013, Vol. 3A, Heat Transfer, Paper GT2013-94710 N2 - In the drive for higher cycle efficiencies in gas turbine engines, turbine blades are seeing an increasingly high heat load. This in turn demands improvements in the internal cooling system and a better understanding of both the level and distribution of the internal heat-transfer. A typical approach to enhance the internal cooling of the turbine blade is by casting angled ‘low blockage’ ribs on the walls of the cooling channels. The objective of the present paper is to determine the detailed Nusselt number distribution in rectangular internal channels with ribs. This knowledge can be used to guide the overall design e.g. to achieve high levels of heat-transfer where required. The effects of rotation as well as the interaction effects of the position and direction of ribs on opposite walls of the cooling channel have been investigated. Numerical calculations have been carried out using the commercial CFD code Fluent to investigate the local Nusselt number enhancement factor in rectangular ducts of different aspect ratios (0.5, 1 and 2) which have 45° or 90° angled ribs located on two opposite walls. This has been studied for different Rotation number Ro (0–0.45) and with a Reynolds number >30000. The first series of studies has been carried out with the same experimental setup as by Han [1]. The geometry was slightly changed to avoid the effect of high heat transfer at the entry. This study identifies important vortical structures, which are dependent on the direction and the position of the ribs. This has a profound effect on the distribution of heat-transfer within the passage. It is shown that the two smooth walls of the duct have different average Nusselt number ratio Nu/NuFD enhancement depending on the rib angle. In addition, based on numerical investigations, simple correlations have been developed for the rotational influence of the internal Nusselt number distribution. A major finding is that the effect of rotation is dominant for low aspect ratio channels and the local enhancement due to the rib position and angle is more dominant for high aspect ratio channels. Y1 - 2013 UR - http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1776088 SN - 978-0-7918-5514-0 U6 - https://doi.org/10.1115/GT2013-94710 PB - ASME CY - New York ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Giersch, Thomas A1 - Nipkau, Jens T1 - Forced Response Analysis of a Mistuned Compressor Blisk T2 - ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas, USA, June 3–7, 2013, Vol. 7B, Structures and Dynamics, Paper GT2013-94142 N2 - The forced response of an E3E-type HPC-blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades namely stiffness and damping are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order and aerodynamic influences it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade alone frequencies as design variables are applied. The validity of the Whitehead-limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental as well as a higher blade mode. Furthermore, the differences to the blisk vibration response without a consideration of the flow and an increase of the disk’s stiffness are discussed. Closing, the influence of pure damping mistuning is analyzed again using optimization. KW - Compressors KW - Blades KW - Blisks KW - Mistuning Y1 - 2013 UR - http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1776795 SN - 978-0-7918-5527-0 U6 - https://doi.org/10.1115/GT2013-94142 PB - ASME CY - New York ER - TY - JOUR A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Golze, Mark A1 - Studener, Johannes T1 - Strukturmechanische Analyse einer Triebwerksverdichter-Schaufelscheibe N2 - Die Verbesserung von Kalibriermethoden für Hochdruckverdichterstufen in ausgeführter Integralbauweise verlangt von den Ingenieuren ein detaillierteres Verständnis der strukturdynamischen Zusammenhänge dieses komplexen Bauteils. Als Ausgangsbasis werden zunächst für das perfekte Normdesign bei Ausnutzung der vorliegenden zyklischen Rotationssymmetrie numerische Ergebnisse vorgestellt. Dabei stehen bezüglich des Schwingverhaltens die Kopplungseffekte zwischen Scheibe und Schaufeln im Mittelpunkt, wobei experimentelle Untersu-chungen am realen Bauteil ergänzend hinzugezogen werden. Zukünftig wird in einem weiteren Schritt im Rahmen erheblich aufwendigerer Berechnungen mit der Berücksichtigung von Imperfektionen hinsichtlich der filigranen Schaufeln die Rotationssymmetrie aufgegeben und somit die Basis für eine gezielte Beeinflussung des Schwingverhaltens infolge von Mistuning - Effekten geschaffen. KW - FEM-Simulation KW - Experimentelle Modalanalysen KW - Kopplungseffekte Y1 - 2002 ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Golze, Mark A1 - Parchem, Roland A1 - Johann, E. T1 - Experimentelle und numerische Untersuchungen hinsichtlich einer Festigkeitsauslegungsoptimierung von Hochdruck-Verdichter-Schaufelscheiben unter besonderer Berücksichtigung von Mistuningeffekten T2 - Deutscher Luft- und Raumfahrtkongress 2003, München, 17. bis 20. November 2003, Bd. 2 KW - Festigkeitsauslegungsoptimierung KW - Hochdruck-Verdichter-Schaufelscheiben KW - Mistuningeffekte Y1 - 2003 SP - 1495 EP - 1504 PB - DGLR CY - Bonn ER - TY - CHAP A1 - Klauke, Thomas A1 - Kühhorn, Arnold A1 - Golze, Mark A1 - Villwock, J. A1 - Lenk, Olaf T1 - Finite-Elemente-Anwendung neuerer Faserverbund-Bruchkriterien und deren Verifizierung mittels CFK-Bauteilprüfung T2 - Deutscher Luft- und Raumfahrtkongress 2003, München, 17. bis 20. November 2003, Bd. 1 KW - FEM KW - Faserverbund KW - CFK-Bauteilprüfung Y1 - 2003 SP - 113 EP - 120 PB - Dt. Ges. für Luft- und Raumfahrt CY - Bonn ER - TY - CHAP A1 - Studener, Johannes A1 - Kühhorn, Arnold T1 - FE-Simulation des thermischen Aufheizvorganges eines Silizium-Wafers im RTA (Rapid Thermal Anneal) - Prozess T2 - Tagungsband, 15. Deutschsprachige ABAQUS-Benutzerkonferenz, 22. - 23. September 2003, Fulda KW - Silizium-Wafer KW - RTA-Prozess KW - Simulation Y1 - 2003 PB - ABAQUS Deutschland GmbH CY - Aachen [u.a.] ER - TY - CHAP A1 - Kober, Markus A1 - Kühhorn, Arnold A1 - Stelldinger, Enrico A1 - Keskin, Akin T1 - Considerations About the Necessary Mesh Density of Bearings in Detailed Finite Element Models T2 - ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics Düsseldorf, Germany, June 16–20, 2014, Paper GT2014-25624 N2 - In order to predict properly the behavior of very complex mechanical models, much focus needs to be done on the level of model details as well as the techniques used to predict component movements based on mechanical and thermal loads. In particular bearings and joints play a significant role in big model assemblies such as aero-engines where most of the structures are modeled by solid elements rather than using traditional shell or beam elements. This approach is very complex and expensive in terms of computational effort however can lead to increased simulation accuracy when done properly. This publication will answer questions related to the modeling techniques required for detailed bearings (not only rotor bearings) and joints of an aero-engine application where these components are not idealized or simplified, i.e. the ball in a ball joint is meshed by solid elements. The investigation will discuss the question about the number of elements needed to mesh a ball joint in such a way that a correct rotation is possible. If the mesh is too coarse, a rotation would be impossible due to the faceting of the rotating parts. It will be shown that a proper rotation depends on a correct relation between the radius of the inner ball, the gap size of the bearing and the number of nodes in the circumferential direction. For this relation an analytical formula has been derived and successfully tested at some examples. Furthermore, some finite element codes offer the possibility of smoothed contact surfaces. These options improve the situation but they might cause issues too. For this reason these smoothed contact options are also considered under the aspects mentioned above. Copyright © 2014 by Rolls-Royce Deutschland Ltd & Co KG KW - Density KW - Bearings Y1 - 2014 SN - 978-0-7918-4577-6 U6 - https://doi.org/10.1115/GT2014-25624 PB - ASME ER - TY - GEN A1 - Klauke, Thomas A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Golze, Mark T1 - Numerical Investigations of Localized Vibrations of Mistuned Blade Integrated Disks (Blisks) Y1 - 2009 ER -