TY - GEN A1 - Kashkarov, Egor B. A1 - Nikitenkov, Nikolay A1 - Sutygina, Alina A1 - Laptev, Roman A1 - Bordulev, Yuriy A1 - Obrosov, Aleksei A1 - Liedke, Maciej O. A1 - Zak, Andrzej A1 - Weiß, Sabine T1 - Microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb treated by plasma immersion Ti ion implantation and deposition T2 - Journal of Alloys and Compounds N2 - The effect of low energy plasma immersion ion implantation and deposition of titanium on microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb was studied. Defect structure and distribution were analyzed by Doppler broadening using slow positron beam. The surface microstructure after modification is represented by nanostructured Ti grains with random orientation. The gradient distribution of titanium as well as vacancy type defects were analyzed. The concentration of vacancy type defects is rising with increasing bias voltage. Gas-phase hydrogenation of the Ti-modified Zr-1Nb alloy was performed at 400 °C for 60 min. The strong interaction of hydrogen with vacancy type defects was demonstrated. Two different changes in the defect structure after hydrogenation were observed: when a titanium film is formed on the surface (after deposition at 500 V) hydrogen trapping occurs with the formation of titanium hydride phases, while in the implanted layer (deposition at 1000 and 1500 V) hydrogen is trapped due to interaction with vacancy type defects. The physical basis of Ti diffusion and its influence on the evolution of defect structure after surface modification and hydrogenation were discussed. KW - Zirconium KW - Ion implantation KW - Titanium KW - Diffusion KW - Surface modification KW - Hydrogen trapping KW - Microstructure KW - Slow positrons KW - Doppler broadening KW - Defects Y1 - 2018 UR - http://www.sciencedirect.com/science/article/pii/S0925838817335879 U6 - https://doi.org/10.1016/j.jallcom.2017.10.151 SN - 0925-8388 VL - 732 SP - 80 EP - 87 ER - TY - GEN A1 - Obrosov, Aleksei A1 - Sutygina, Alina A1 - Manakhov, Anton A1 - Bolz, Sebastian A1 - Weiß, Sabine A1 - Kashkarov, Egor B. T1 - Oxidation Behavior of Zr–1Nb Corroded in Air at 400 °C after Plasma Immersion Titanium Implantation T2 - Metals N2 - In this paper, the influence of plasma immersion titanium implantation into the zirconium alloy Zr-1Nb on the oxidation behavior at 400 °C for 5, 24, 72, and 240 h in air under normal atmospheric pressure (101.3 kPa) was shown. The influence of implantation on the protective properties of the modified layer was shown. The valence of the oxides before and after implantation was analyzed by means of X-ray photoelectron spectroscopy (XPS). Grazing incidence X-ray diffraction (GIXRD) was carried out to examine the phase composition after titanium ion implantation and oxidation. Differential scanning calorimetry (DSC) revealed that titanium implantation exhibited effects of stabilizing the β phase. The formation of the t-ZrO2 and m-ZrO2 was observed during the oxidation of the as-received and modified Zr-1Nb. The measurement of weight gain showed an improvement in oxidation resistance of Ti implanted Zr-1Nb at the oxidation up to 24 h when compared with that of the as-received Zr-1Nb. However, at longer oxidation cycle the oxidation rate of Ti-implanted zirconium alloy is the same with the as-received alloy, which attributed to the layer thickness. Nevertheless, the corrosion of the Ti-implanted alloy is more uniform, while a local corrosion and cracks was detected on the surface of the as-received alloy. KW - zirconium alloy KW - titanium KW - ion implantation KW - PIII KW - oxidation KW - DSC KW - XPS KW - surface morphology KW - X-ray diffraction Y1 - 2018 UR - http://www.mdpi.com/2075-4701/8/1/27/htm U6 - https://doi.org/10.3390/met8010027 SN - 2075-4701 VL - 8 IS - 1 ER - TY - GEN A1 - Kashkarov, Egor B. A1 - Nikitenkov, Nikolay A1 - Sutygina, Alina A1 - Obrosov, Aleksei A1 - Manakhov, Anton A1 - Polčak, Josef A1 - Weiß, Sabine T1 - Hydrogen absorption by Ti-implanted Zr-1Nb alloy T2 - International journal of hydrogen energy N2 - This paper describes the hydrogenation behavior of Zr-1Nb alloy Ti-implanted by plasma immersion ion implantation (PIII). Hydrogen sorption kinetics of the Ti-modified alloy was investigated under gas-phase hydrogenation at 400 °C for 1 h. The influence of implantation time on the protective properties of the modified layer was shown. The lowest hydrogen absorption as well as the highest hydrogen trapping efficiency was achieved after PIII for 30 min. The main contribution to the reduction of hydrogen permeation is the formation of an oxide layer consisting of mixed TiO2 and ZrO2 on the modified surface of the alloy. X-ray photoelectron spectroscopy (XPS) revealed that PIII titanium oxide exists on the surface in the form of TiO2, which transforms to mixed Ti2O3 and TiO2 after hydrogenation. The thickness of the modified layer increases with implantation time that improves the efficiency of hydrogen trapping. All the absorbed hydrogen is gradually distributed in the modified layer and no hydrides are formed after hydrogenation in Ti-modified Zr-1Nb for 15 and 30 min. KW - Zirconium KW - Titanium implantation KW - Hydrogenation KW - X-ray photoelectron spectroscopy KW - Glow discharge optical emission spectroscopy KW - X-ray diffraction Y1 - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0360319917346359 U6 - https://doi.org/10.1016/j.ijhydene.2017.12.003 SN - 0360-3199 VL - 43 IS - 4 SP - 2484 EP - 2491 ER - TY - GEN A1 - Kashkarov, Egor B. A1 - Obrosov, Aleksei A1 - Sutygina, Alina A1 - Uludintceva, Elena A1 - Mitrofanov, Andrei A1 - Weiß, Sabine T1 - Hydrogen Permeation, and Mechanical and Tribological Behavior, of CrNx Coatings Deposited at Various Bias Voltages on IN718 by Direct Current Reactive Sputtering T2 - Coatings N2 - In the current work, the microstructure, hydrogen permeability, and properties of chromium nitride (CrNₓ) thin films deposited on the Inconel 718 superalloy using direct current reactive sputtering are investigated. The influence of the substrate bias voltage on the crystal structure, mechanical, and tribological properties before and after hydrogen exposure was studied. It was found that increasing the substrate bias voltage leads to densification of the coating. X-ray diffraction (XRD) results reveal a change from mixed fcc-CrN + hcp-Cr₂N to the approximately stoichiometric hcp-Cr₂N phase with increasing substrate bias confirmed by wavelength-dispersive X-ray spectroscopy (WDS). The texture coefficients of (113), (110), and (111) planes vary significantly with increasing substrate bias voltage. The hydrogen permeability was measured by gas-phase hydrogenation. The CrN coating deposited at 60 V with mixed c-CrN and (113) textured hcp-Cr₂N phases exhibits the lowest hydrogen absorption at 873 K. It is suggested that the crystal orientation is only one parameter influencing the permeation resistance of the CrNx coating together with the film structure, the presence of mixing phases, and the packing density of the structure. After hydrogenation, the hardness increased for all coatings, which could be related to the formation of a Cr₂O₃ oxide film on the surface, as well as the defect formation after hydrogen loading. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient by up to 40%. The lowest value of 0.25 ± 0.02 was reached for the CrNₓ coating deposited at 60 V after hydrogenation. KW - CrNx coatings KW - Physical Vapour Deposition (PVD) KW - hydrogenation KW - tribology KW - mechanical properties KW - X-ray diffraction Y1 - 2018 UR - http://www.mdpi.com/2079-6412/8/2/66/htm U6 - https://doi.org/10.3390/coatings8020066 SN - 2079-6412 N1 - Special Issue "Surface Preparation and Treatments for Enhancing the Coating Performance" VL - 8 IS - 2 ER - TY - GEN A1 - Evdokimov, Anton A1 - Obrosov, Aleksei A1 - Ossenbrink, Ralf A1 - Weiß, Sabine A1 - Michailov, Vesselin T1 - Mechanical properties of dissimilar steel-aluminum weld T2 - Materials Science and Engineering: A N2 - Knowledge of the properties of dissimilar welds is of great significance for the development of multi-material lightweight structures. In this study, stainless steel (1.4301) and aluminum alloy (6082-T6) sheets were welded in overlap configuration in keyhole mode. The resulting weld metals were investigated with respect to their mechanical properties. Several samples were cut out of different locations along the welds and their cross-sections were subjected to indentation testing and energy dispersive X-ray (EDS) analysis. Young's modulus E, yield stress σy, and strain hardening exponent n, were determined by means of reverse analysis of the indentation load (P) – depth (h) curves, allowing construction of true stress – true strain relations. An essential increase in yield stress in comparison to the one of the base alloys was observed inside the weld metal. In contrary, Young's modulus and strain hardening exponent of the welds were almost identical to corresponding values of the base steel metal. Due to the sensitivity of yield stress to the aluminum content, slight variations of the welding parameters lead to significant changes in elastic-plastic behavior of the weld metal. KW - Mechanical properties KW - Indentation KW - Reverse analysis KW - EDS measurements KW - Dissimilar steel aluminum welding KW - FEM Y1 - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0921509318303563 U6 - https://doi.org/https://doi.org/10.1016/j.msea.2018.03.019 SN - 0921-5093 VL - Volume 722 SP - 242 EP - 254 ER - TY - GEN A1 - Obrosov, Aleksei A1 - Sutygina, Alina A1 - Kashkarov, Egor B. A1 - Weiß, Sabine T1 - Oxidation behavior of Zr–1Nb in air at 400°C after Titanium Plasma Immersion Ion Implantation N2 - Zirconium alloys have been widely used in nuclear reactors due to low thermal neutron capture cross-section, excellent corrosion resistance and acceptable mechanical properties [1, 2]. Nowadays several methods apply for improving hydrogen and corrosion resistance such as addition of stabilizing additives (yttrium) [3, 4], deposition of thin solid films [5, 6], micro-arc oxidation [7] and modification of the surface by electron beam [8, 9]. Despite the multiplicity of the methods hydrogen embrittlement is still a pressing issue. Previous results [10, 11] have shown the positive influence of plasma immersion titanium implantation on the hydrogenation behavior of Zr–1Nb and Zr–2.5 Nb. After Ti implantation hydrogen preferably accumulates in the modified surface layer comprising the implanted Ti. Furthermore, the hydrogen concentration is considerably less inside the zirconium modified sample than in the as-received samples. The integration of elements into the zirconium lattice can influence the valence of the surface and change corrosion and oxidation rates of the alloys. So it is very important not to decrease the zirconium oxidation resistance due to Ti implantation. Therefore, the purpose of this research is to study of the influence of Ti implantation on surface morphology, oxidation rate and phase structure of the Zr–1Nb alloy after oxidation on air at 400 0C for 5, 24, 72 and 240 h. The surface structure of the samples and their elemental composition were investigated with the scanning electron microscope Mira II XMH (Tescan) with energy dispersive x-ray spectroscopy system (EDS). X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC) as well as X-ray diffraction (XRD) was used to characterise the influence of titanium implantation on the oxidation behaviour. The results show that the oxidation kinetics after Ti modification of the zirconium alloy changed. Although the weight gain of the implanted sample remains approximately the same, it can be considered that Ti implantation stabilizes the oxide layer and has beneficial influence on the oxidation protection of Zr-1Nb. KW - Zr–1Nb KW - titanium ion implantation KW - oxidation KW - DSC KW - plasma immersion ion implantation (PIII) Y1 - 2018 UR - https://www.pse-conferences.net/tl_files/abstract-print/PSE2018-PO4029.pdf ER - TY - GEN A1 - Abang, Roger Atini A1 - Weiß, Sabine A1 - Krautz, Hans Joachim T1 - Impact of increased power plant cycling on the oxidation and corrosion of coal-fired superheater materials T2 - Fuel N2 - As power generation from variable renewable energy sources such as wind and solar power continues to increase in the future, fewer baseload power plants will be needed. As a result, high operational flexibility is becoming a vital requirement for conventional power plants to allow for the smooth integration of the variable renewable energy sources (v-RES) into the grid. To understand the impact of high operational flexibility (increased cycling) for coal-fired power plant materials, five commercial coal boiler superheater and reheater materials were investigated under isothermal and cyclic conditions for 1000 h each. The candidate alloys investigated were: T91, VM12-SHC, TP347-HFG, DMV304 HCu and DMV310 N. The results (weight change kinetics and metallographic analysis) after exposure at a metal surface temperature of 650 °C clearly showed the impact of increased flexibility on the corrosion and oxidation of the materials. Oxide growth (weight gain), metal loss, oxide spallation, and grain boundary attack were found to be more severe under cyclic conditions than under isothermal conditions. KW - Power plant flexibility, Isothermal oxidation, Cyclic oxidation, High temperature corrosion, Superheaters Y1 - 2018 U6 - https://doi.org/10.1016/j.fuel.2018.02.047 SN - 0016-2361 VL - 2018 IS - 220 SP - 521 EP - 534 ER - TY - GEN A1 - Santhanakrishnan Balakrishnan, Venkateswaran A1 - Seidlitz, Holger A1 - Weiß, Sabine T1 - Layup Configuration Effect on Notch Residual Strength in Composite Laminates T2 - Materials N2 - The current trend shows an increasing demand for composites due to their high stiffness to weight ratio and the recent progress in manufacturing and cost reduction of composites. To combine high strength and stiffness in a cost-effective way, composites are often joined with steel or aluminum. However, joining of thermoset composite materials is challenging because circular holes are often used to join them with their metal counterparts. These design based circular holes induce high stress concentration around the hole. The purpose of this paper is to focus on layup configuration and its impact on notch stress distribution. To ensure high quality and uniformity, the holes were machined by a 5 kW continuous wave (cw) CO2 laser. The stress distribution was evaluated and compared by using finite element analysis and Lekhnitskii’s equations. For further understanding, the notch strength of the laminates was compared and strain distributions were analyzed using the digital image correlation technique. KW - composite KW - notch stress KW - digital image correlation KW - ekhnitskii’s equation Y1 - 2018 U6 - https://doi.org/10.3390/ma11020308 SN - 1996-1944 VL - 11 IS - 2 ER - TY - GEN A1 - Kashkarov, Egor B. A1 - Ryabchikov, Alexander I. A1 - Kurochkin, Alexander A1 - Syrtanov, Maxim S. A1 - Shevelev, Alexey A1 - Obrosov, Aleksei A1 - Weiß, Sabine T1 - Hydrogen Interaction with Deep Surface Modified Zr-1Nb Alloy by High Intensity Ti Ion Implantation T2 - Metals N2 - A deep surface modified TiZr layer was fabricated by high-intensity low-energy titanium ion implantation into zirconium alloy Zr-1Nb. Gas-phase hydrogenation was performed to evaluate protective properties of the modified layer against hydrogen permeation into Zr-1Nb alloy. The effects of ion implantation and hydrogen on microstructure, phase composition and elemental distribution of TiZr layer were analyzed by scanning electron microscopy, X-ray diffraction, and glow-discharge optical emission spectroscopy, respectively. It was revealed that TiZr layer (~10 μm thickness) is represented by α′ + α(TiZr) lamellar microstructure with gradient distribution of Ti through the layer depth. It was shown that the formation of TiZr layer provides significant reduction of hydrogen uptake by zirconium alloy at 400 and 500 °C. Hydrogenation of the modified layer leads to refinement of lamellar plates and formation of more homogenous microstructure. Hydrogen desorption from Ti-implanted Zr-1Nb alloy was analyzed by thermal desorption spectroscopy. Hydrogen interaction with the surface modified TiZr layer, as well as its resistance properties, are discussed. KW - zirconium alloy KW - titanium KW - low energy ion implantation KW - hydrogen KW - sorption KW - microstructure KW - morphology KW - martensitic phase Y1 - 2018 UR - https://www.mdpi.com/2075-4701/8/12/1081/htm U6 - https://doi.org/10.3390/met8121081 SN - 2075-4701 VL - 8 IS - 12 ER -