TY - GEN A1 - Weber, Kathrin A1 - Li, T. A1 - Løvås, Terese A1 - Perlman, Cathleen A1 - Seidel, Lars A1 - Mauß, Fabian T1 - Stochastic reactor modeling of biomass pyrolysis and gasification T2 - Journal of analytical and applied pyrolysis N2 - Abstract In this paper, a partially stirred stochastic reactor model is presented as an alternative for the modeling of biomass pyrolysis and gasification. Instead of solving transport equations in all spatial dimensions as in CFD simulations, the description of state variables and mixing processes is based on a probability density function, making this approach computationally efficient. The virtual stochastic particles, an ensemble of flow elements consisting of porous solid biomass particles and surrounding gas, mimic the turbulent exchange of heat and mass in practical systems without the computationally expensive resolution of spatial dimensions. Each stochastic particle includes solid phase, pore gas and bulk gas interaction. The reactor model is coupled with a chemical mechanism for both surface and gas phase reactions. A Monte Carlo algorithm with operator splitting … KW - Pyrolysis KW - gasification KW - Stochastic reactor modeling Y1 - 2017 U6 - https://doi.org/10.1016/j.jaap.2017.01.003 SN - 0165-2370 VL - 124 SP - 592 EP - 601 ER - TY - GEN A1 - Manzeschke, Arne A1 - Weber, Karsten A1 - Fangerau, Heiner A1 - Rother, Elisabeth A1 - Quack, Friederike A1 - Dengler, Kathrin A1 - Bittner, Uta T1 - Letter to the Editor: An ethical evaluation of telemedicine applications must consider four major aspects – A comment on Kidholm et al. T2 - International Journal of Technology Assessment in Health Care KW - Telemedicine KW - Ethical evaluation Y1 - 2013 UR - http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8839375 U6 - https://doi.org/10.1017/S0266462312000773 SN - 0266-4623 VL - 29 IS - 1 SP - 110 EP - 111 ER - TY - GEN A1 - Weber, Karsten A1 - Bittner, Uta A1 - Manzeschke, Arne A1 - Rother, Elisabeth A1 - Quack, Friederike A1 - Dengler, Kathrin A1 - Fangerau, Heiner T1 - Taking patient privacy and autonomy more seriously: Why an Orwellian account is not sufficient T2 - American Journal of Bioethics KW - Ambient Assisted Living, Telecare Y1 - 2012 UR - http://www.tandfonline.com/doi/abs/10.1080/15265161.2012.699147 U6 - https://doi.org/10.1080/15265161.2012.699147 SN - 1526-5161 VL - 12 IS - 9 SP - 51 EP - 53 ER - TY - GEN A1 - Porada, Philipp A1 - Bader, Maaike Y. A1 - Berdugo, Monica B. A1 - Colesie, Claudia A1 - Ellis, Christopher J. A1 - Giordani, Paolo A1 - Herzschuh, Ulrike A1 - Ma, Yunyao A1 - Launiainen, Samuli A1 - Nascimbene, Juri A1 - Petersen, Imke A1 - Raggio Quílez, José A1 - Rodríguez-Caballero, Emilio A1 - Rousk, Kathrin A1 - Sancho, Leopoldo G. A1 - Scheidegger, Christoph A1 - Seitz, Steffen A1 - Van Stan, John T. A1 - Veste, Maik A1 - Weber, Bettina A1 - Weston, David J. T1 - A research agenda for non-vascular photoautotrophs under climate change T2 - New Phytologist N2 - Non-vascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but it is highly uncertain to what extent this will affect the associated ecosystem functions and services. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and worldwide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on (1) potential for acclimation (2) response to elevated CO2 (3) role of the microbiome and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multi-method laboratory and field experiments and eco-physiological modelling, for which sustained scientific collaboration on NVP research will be essential. KW - biocrusts KW - climate change KW - ecosystem services KW - epiphytes KW - functional traits KW - lichens and bryophytes KW - model–data integration KW - nonvascular vegetation Y1 - 2022 U6 - https://doi.org/10.1111/nph.18631 SN - 0028-646X SN - 1469-8137 VL - 237 (2023) IS - 5 SP - 1495 EP - 1504 ER -