TY - GEN A1 - Yellur, Manoja Rao A1 - Seidlitz, Holger A1 - Kuke, Felix A1 - Wartig, Kevin A1 - Tsombanis, Nikolas T1 - A low velocity impact study on press formed thermoplastic honeycomb sandwich panels T2 - Composite Structures N2 - At present plywood structures are used in the loading area of utility structures. Low velocity impact studies on these structures showed cracks on its lower surface. Hence, in the current study low-velocity impact of a lighter honeycomb sandwich structure is investigated to satisfy the needs of the utility vehicle segment. To meet this objective, facing sheets are manufactured using the polypropylene matrix and glass fibers. Polypropylene honeycombs are used in the study. Depending on the experimental boundary conditions, a cross-ply laminate set up is used for the facing sheets. An impact energy of 100 J is chosen in the study. This energy caused visible failure on the plywood sample. Hence a lighter sandwich construction which can resist 100 J impact is implemented in this study. Influence of top and bottom facing sheet thicknesses on the amount of damage inflicted on its surfaces are studied. Experimental histories of absorbed energy and contact force are recorded. A finite element analysis is performed using LS-DYNA and numerical results are compared with the experimental responses. A honeycomb sandwich panel [0/90/90/0/Core/0/90/90/0] meeting the objective of the study is seen as an optimum replacement for the existing plywood structures. KW - Low-velocity impact KW - Sandwich panel KW - Honeycomb core KW - Finite element analysis (FEA) Y1 - 2019 UR - http://www.sciencedirect.com/science/article/pii/S0263822318334743 U6 - https://doi.org/10.1016/j.compstruct.2019.111061 SN - 0263-8223 VL - 225 SP - 111061 ER - TY - GEN A1 - Santhanakrishnan Balakrishnan, Venkateswaran A1 - Seidlitz, Holger A1 - Wartig, Kevin A1 - Tsombanis, Nikolas T1 - Influence of processing parameters on the impact behaviour of glass/polyamide-6 composite T2 - Composites Part B: Engineering N2 - This study aims to investigate the low-velocity impact response and post-impact flexural behaviour of glass/polyamide-6 (G/PA-6) composite. G/PA-6 composites with a layup configuration of [02,902]s were prepared via press-forming technique. Composite samples were developed using four different processing conditions, by modifying compression pressure and heating temperature. Local variations of fiber volume and porosity fraction were noticed for samples developed in each processing conditions. On the investigated samples, damages were induced by using 35 joule of drop weight impact to investigate the impact resistance of samples with respect to different processing conditions. The damage behaviour and residual flexural strength was characterized using a micro-CT and three-point bending tests respectively. Furthermore, the influence of porosity fraction on the residual flexural strength were investigated. This paper will provide necessary fundamental knowledge for future selection of processing parameters in order to have enhanced impact performance. KW - A. Polymer-matrix composites (PMCs) KW - A. Thermoplastic resin KW - B. Impact behaviour KW - B. Porosity KW - B. Fracture KW - Press forming technology Y1 - 2019 UR - http://www.sciencedirect.com/science/article/pii/S1359836818318535 U6 - https://doi.org/10.1016/j.compositesb.2018.09.064 SN - 1359-8368 VL - 159 SP - 292 EP - 299 ER -