TY - GEN A1 - Acker, Jörg A1 - Langner, Thomas A1 - Meinel, Birgit A1 - Sieber, Tim T1 - Saw Damage as an Etch Mask for the Acidic Texturization of Multicrystalline Silicon Wafers T2 - Materials Science in Semiconductor Processing N2 - The surface of multicrystalline silicon solar cells are etched by mixtures of HF, HNO3 and H2SiF6 in order to remove saw damage caused by wafer slicing, as well as to create a water surface topography that provides a low reflectance for incident light, otherwise known as the texture. Topographically analyzing wafer surfaces before and after etching has revealed that the saw damage controls the texturized wafer surface’s final topography.The first key factor is the dimension and magnitude of the plastic stress field introduced by indenting SiC grains into the wafer surface during the wafering process. The second key factor is that lattice-stressed silicon is etched at a higher rate than unstressed bulk silicon. At the wire entrance, side sharp and large SiC grains create the deepest indention pits, and therefore the deepest of the water surface stress fields. The lattice-disturbed silicon inside these pits is etched at a higher rate compared to the pit’s side walls, which are uniformly attacked across the wafer area. Consequentially, existing pits deepen, and these areas generate the wafer’s lowest reflectivity. At the wire exit side, a higher number of smaller and rounder SiC particles indent the surface and create more numerous and shallower indention pits compared to the wire entrance side. The resulting stress field is less deep, so less silicon is removed from inside of these pits during etching compared to the wire entrance side. This yields to a wafer surface region consisting of shallowly etched pits and higher reflectance. It is concluded that the saw damage acts like an etch mask in the texturization of multicrystalline silicon wafers. KW - silicon KW - texturization KW - acidic etching KW - multi-wire sawing KW - stress field KW - confocal microscopy KW - solar cell Y1 - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1369800117313896 U6 - https://doi.org/10.1016/j.mssp.2017.09.039 SN - 1369-8001 VL - 74 SP - 238 EP - 248 ER - TY - GEN A1 - Sieber, Tim A1 - Ducke, Jana A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - Recovery of Li(Ni0.33Mn0.33Co0.33)O2 from Lithium-Ion Battery Cathodes: Aspects of Degradation T2 - Nanomaterials N2 - Nickel–manganese–cobalt oxides, with LiNi0.33Mn0.33Co0.33O2 (NMC) as the most prominent compound, are state-of-the-art cathode materials for lithium-ion batteries in electric vehicles. The growing market for electro mobility has led to a growing global demand for Li, Co, Ni, and Mn, making spent lithium-ion batteries a valuable secondary resource. Going forward, energy- and resource-inefficient pyrometallurgical and hydrometallurgical recycling strategies must be avoided. We presented an approach to recover NMC particles from spent lithium-ion battery cathodes while preserving their chemical and morphological properties, with a minimal use of chemicals. The key task was the separation of the cathode coating layer consisting of NMC, an organic binder, and carbon black, from the Al substrate foil. This can be performed in water under strong agitation to support the slow detachment process. However, the contact of the NMC cathode with water leads to a release of Li+ ions and a fast increase in the pH. Unwanted side reactions may occur as the Al substrate foil starts to dissolve and Al(OH)3 precipitates on the NMC. These side reactions are avoided using pH-adjusted solutions with sufficiently high buffer capacities to separate the coating layer from the Al substrate, without precipitations and without degradation of the NMC particles. KW - lithium KW - nickel–manganese–cobalt oxide KW - NMC KW - leaching KW - recycling KW - SEM-EDX KW - Raman spectroscopy KW - lithium ion battery Y1 - 2019 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/charact_nano UR - https://www.mdpi.com/2079-4991/9/2/246 U6 - https://doi.org/10.3390/nano9020246 SN - 2079-4991 VL - 9 IS - 2 SP - 246 EP - 259 ER - TY - GEN A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - A revised model of silicon oxidation during the dissolution of silicon in HF/HNO₃ mixtures T2 - Physical chemistry, chemical physics N2 - The stoichiometry of wet chemical etching of silicon in concentrated HF/HNO₃ mixtures was investigated. The formation of nitrogen species enriched in the etching mixture and their reactivity during the etching process was studied. The main focus of the investigations was the comprehensive quantification of the gaseous reaction products using mass spectrometry. Whereas previously it could only be speculated that nitrogen was a product, its formation was detected for the first time. The formation of hydrogen, N₂, N₂O and NH₄⁺ showed a dependence on the etching bath volume used, which indicates the formation of nitrogen compounds by side reactions. Simultaneously, the ratio of the nitrogen oxides, NO and NO₂, formed decreases with increasing etching bath volume, while nitric acid consumption increases, so that the formation of NO₂ could also be identified as a side reaction. Based on the stoichiometries obtained, a new reaction scheme for the reduction of nitric acid during etching in HF/HNO₃ mixtures and an electron balance for the oxidation of silicon is presented. KW - silicon KW - etching KW - mechanism KW - nitrogen oxide KW - hydrogen KW - mass spectrometry KW - Raman spectroscopy KW - kinetics Y1 - 2019 UR - https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP04429A#!divAbstract U6 - https://doi.org/10.1039/c9cp04429a SN - 1463-9076 VL - 21 SP - 22002 EP - 22013 ER - TY - GEN A1 - Langner, Thomas A1 - Rietig, Anja A1 - Acker, Jörg T1 - Raman spectroscopic determination of the degree of dissociation of nitric acid in binary and ternary mixtures with HF and H2SiF6 T2 - Journal of Raman Spectroscopy N2 - The oxidizing effect of nitric acid in aqueous solutions depends on the concentration of undissociated nitric acid. This makes the concentration of undissociated nitric acid an essential parameter to monitor and control the quality of silicon etching in the industrial manufacturing of solar cells. In the present study, a method known already is extended in such a way that the degree of dissociation of nitric acid can be determined by Raman spectroscopy in HF/HNO3/H2SiF6 acid mixtures over a broad concentration range for the first time and without using an internal or external standard to compensate the typical time‐dependent drift of a Raman spectrometer. The method developed requires the calculation of a peak area ratio from the areas of the unimpeded Raman signals assigned to nitrate (νN − O) at 1,048 cm−1 and to undissociated HNO3 (νN − OH) at 957 cm−1. The correlation between the peak ratio and the degree of dissociation of nitric acid revealed can be described by a simple empirical equation. Using this equation, the degree of dissociation of nitric acid can be determined over a broad concentration range in binary and ternary mixtures of HNO3 with HF and H2SiF6. The impact of the acids HF and H2SiF6 and the total water content in the degree of dissociation of nitric acid is discussed. KW - Raman spectroscopy KW - nitric acid KW - dissociation KW - hexafluosilicic acid KW - hydrofluoric acid KW - silicon KW - etching Y1 - 2020 U6 - https://doi.org/10.1002/jrs.5769 VL - 51 IS - 2 SP - 366 EP - 372 ER - TY - CHAP A1 - Acker, Jörg A1 - Langner, Thomas A1 - Koschwitz, Tim ED - Marciniec, Bogdan T1 - Lattice-strain induced chemical reactivity of silicon T2 - 8th European Silicon Days 2018, Conference Proceedings N2 - Silicon wafer for solar application are produced by multi-wire sawing from 12x12 cm2 silicon bricks. After slicing the wafer surface consists of a several micrometer surface layer of very heterogeneous constitution, the so called saw damage. The topmost layer of the saw damage consists of debris, amorphous silicon and high-pressure silicon phases followed by a very defect-rich and lattice-strained region of fractures, cracks, and rifts caused by the rupture of the silicon lattice during the slicing process [1,2]. Such a damaged surface exhibits very poor semiconductor properties; therefore the saw damage is removed by chemical etching using mixtures of HF, HNO3 and H2SiF6 in order to produce solar cells. Recent investigations showed that the etching of the saw damage is a very heterogeneous process [3-5]. The surface consists of spots at which the etching forms very rapidly deep grooves while other spots remain unetched over a considerably long time. Some of the rapidly formed grooves seem to remain their shape while others grow because of an attack of the side walls, however, without making these grooves significantly deeper. So far there is no explanation for this behavior. The present work is the first study about the locally resolved etching behavior of lattice-strained silicon. The surface of polished single-crystal wafers were scratched with a diamond tip under defined conditions. By means of confocal Raman microscopy the local state of the silicon lattice in and nearby the scratches were characterized in terms of compression and tensile stress with a lateral resolution of 2 μm. Then, the scratches were etched stepwise using HF-HNO3-H2SiF6 mixtures and measured by confocal microscopy to quantify the local removal of silicon and measured by confocal Raman microscopy to monitor the lattice state. For the first time this study reveals and quantifies the impact of tensile and compressive lattice stress on the etch rate of silicon with the major outcome, that stress leads to a significantly anisotropic etching behavior. From the time dependent development of the scratch profiles and the topography of the surrounding wafer areas a detailed picture about the formation of highly reactive species and etching behavior against unstrained silicon is deduced. KW - silicon KW - lattice strain KW - reactivity KW - etching KW - Raman microscopy KW - confocal microscopy Y1 - 2016 SP - S. 124 PB - Wielkopolska Centre for Advanced Technologies, Adam Mickiewicz University CY - Poznań, Poland ER - TY - CHAP A1 - Langner, Thomas A1 - Sieber, Tim A1 - Acker, Jörg ED - Scheschkewitz, David ED - Kickelbick, Guido T1 - Lattice strain controls the etching of solar wafer surfaces T2 - 9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts N2 - Multi-wire sawing using an abrasive SiC slurry or diamond wires constitutes the main slicing techniques for multi- and monocrystalline silicon crystals in photovoltaics. The massive mechanical load during the sawing process creates a wafer surface layer characterized by lattice defects, pits, fractures, rifts, cracks, amorphous Si and even some high-pressure Si modifications, otherwise known as saw damage.[1] This highly defect-rich surface causes the rapid recombination of electron-hole pairs, requiring that it be removed by etching in order to manufacture solar cells and to generate a surface morphology having a low reflectivity which directly affects the solar cell’s efficiency. However, etching of the saw damage features of a heterogeneous and laterally unevenly distributed etch attack and a significantly higher etch rate compared to the underlying bulk silicon.[2,3] The present study is focused on the question of how mechanically introduced lattice strain in single-crystalline silicon alters the chemical reactivity of the silicon atoms affected by the strain field on a microscopic length scale. The magnitude and local distribution of lattice strain were extracted from confocal Raman microscopy measurements according to Ref. 4. One of the parameters used to describe the reactivity of silicon is the local etch rate, which was derived from the local removal before and after etching by confocal microscopy. Wet-chemical etching was performed with HF-HNO3-H2SiF6 acid mixtures of different concentrations. It was found, that the reactivity of silicon increased linearly with the magnitude of lattice strain. In particular, an increase in tensile strain led to a higher increase in reactivity compared to the increase observed with growing compressive strain. The second decisive parameter is the reactivity of the etch mixture. Diluted acid mixtures with a low reactivity attack only the highest strained Si, whereas more concentrated and therefore more reactive acid mixtures are able to attack even slightly strained Si. Side effects, such as the behavior of amorphous or nanocrystalline Si and the generation of highly reactive intermediary species while etching, are discussed. KW - Raman spectroscopy KW - silicon KW - lattice strain KW - etching KW - confocal microscopy Y1 - 2018 SP - S. 201 PB - Universität des Saarlandes CY - Saarbrücken ER - TY - CHAP A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg ED - Scheschkewitz, David ED - Kickelbick, Guido T1 - Dissolution of silicon in HF/HNO3 mixtures: A revised model T2 - 9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts N2 - The dissolution of Si in HF/HNO3 consists of a set of complex reactions and thus a large number of reaction products. The most comprehensive picture of this reaction, the role of the involved reaction products and the reactivity of the HF/HNO3 mixtures depending on their composition is drawn by Steinert et al..[1]-[3] Based on the first systematic investigations on hydrogen formation by Hoffmann et al.[4], Acker et al. succeeded a first mass and electron balance for the reaction of silicon in HF/HNO3.[5] However, there is still a lack in interpretation of the mass end electron balances arising from several nitrous oxides. So far, the identified nitrogen oxides NO, NO2 and N2O were considered in sum[5] and neither separated nor individually studied or quantified. The aim of this work is to complete the mass and electron balance by the contribution of the individual nitrous oxides and to identify their individual formation pathways. Kinetic measurements of the NO and NO2 formation during the dissolution of Si, NO2 turns out as a result from the oxidation of the primary product NO by the HNO3 in the etching mixtures. Subsequently, NO and NO2 react to N2O3 dissolved in the acid mixture. The kinetics of both reactions were individually studied by bubbling NO in HF/HNO3 mixtures of different composition. The already identified intermediary species N4O62+ turns out to be formed by disproportionation of dissolved NO2 via N2O4 without dissolution of silicon. A detailed kinetic studied showed, that only dissolved N2O3 and not the intermediate N4O62+ contribute to the dissolution rate of silicon in HF/HNO3 acid mixtures. Finally, kinetic measurements revealed that the formed H2 reduces gaseous NO yielding to the final gaseous reaction products N2, N2O as well as to ammonium ions which all are formed with identical reaction rate. This reaction is assumed to proceed via NH2OH as intermediate. As result of the identification and quantification of intermediary and final reaction products a new reaction scheme needs to be established leading to a new approach to the mass and electron balance for the oxidation of silicon during the dissolution in HF/HNO3 mixtures. KW - silicon KW - etching KW - Raman spectroscopy KW - mass spectrometry KW - gas analysis KW - reaction mechanism Y1 - 2018 SP - S. 199 PB - Universität des Saarlandes CY - Saarbrücken ER - TY - GEN A1 - Meinel, Birgit A1 - Langner, Thomas A1 - Preis, Pirmin A1 - Wefringhaus, Eckard A1 - Acker, Jörg T1 - A two-step acidic texturization procedure for the manufacture of lowreflective multi-crystalline silicon solar wafer T2 - Solar Energy N2 - Texturization of multi-crystalline silicon wafers for photovoltaic application comprises the removal of the saw damage and shaping the topography of the bulk surface to create a surface with a low reflectivity, the so-called texture. Etching of multi-crystalline silicon wafers is usually carried out with acid mixtures consisting of hydrofluoric acid (HF), nitric acid (HNO₃) and hexafluorosilicic acid (H₂SiF₆). The present study reveals that such acid mixtures diluted by water or modified by the addition of ammonia solution, NH₃ (added as ammonium hydroxide solution, NH₄OH) can create textures with a significantly increased surface area exceeding that obtained by standard etching mixtures by a factor of 2.5–3. This yields a significantly reduced reflectivity of the etched wafer surface. However, the addition of water or NH₃ causes a very low etching rate, which makes such mixtures inapplicable for industrial application. To overcome this disadvantage, a two-step etching regime was developed to produce surface-enlarged solar wafers within a timespan typical for industrial production lines. This procedure comprises a first step of slow etching with a NH₃-modified etching mixture to pre-shape the ascut wafer surface. The second etching step is performed with a typical HF/HNO₃/H₂SiF₆ etching mixture that finalizes the texturization. Electrical measurements made on solar cells produced from such etched wafer confirm the improved surface quality of the two-step etched wafer compared to the reference wafer. KW - acidic texturization KW - multi-crystalline silicon KW - reflectivity KW - solar cell parameter KW - topography KW - confocal microscopy Y1 - 2019 U6 - https://doi.org/10.1016/j.solener.2019.09.051 SN - 0038-092X VL - 193 SP - 395 EP - 402 ER - TY - GEN A1 - Langner, Thomas A1 - Sieber, Tim A1 - Rietig, Anja A1 - Merk, Virginia A1 - Pfeiffer, Lutz A1 - Acker, Jörg T1 - A Phenomenological and Quantitative View on the Degradation of Positive Electrodes from Spent Lithium-ion Batteries in Humid Atmosphere T2 - Scientific Reports N2 - The present study deals with the phenomenological observation of the corrosion of the positive electrode foil of lithium-ion batteries containing LiNi0.6Co0.2Mn0.2O2 (NMC) as cathode material. Due to the presence of moisture, localized water accumulation is formed on the NMC surface. The water absorbed by the electrolyte reacts with the NMC under Li+/H+ exchange and the resulting pH increase leads to dissolution of the carrier foil and characteristic salt-like blooms on the NMC surface. With the increase in the relative area occupied by the holes in the aluminum foil per time, a sufficiently suitable parameter was found with which to quantitatively determine the extent of corrosion. The degree of degradation depends on time and ambient humidity. It was shown that functional recycling with the water jet method is no longer applicable for degraded foils, since the mechanical stability of the foils decreases as corrosion progresses. Lithium, aluminum, sulfur and oxygen were detected in the blooms using SEM–EDX and Laser-Induced-Breakdown-Spectroscopy (LIBS). The underlying NMC layer was found to contain mainly aluminum and significantly lower lithium content than the non-degraded material. SEM and Raman microscopy analyses also showed that the active material is also locally degraded and therefore no longer suitable for functional recycling. KW - Analytical chemistry KW - lithium KW - cathode KW - materials KW - LIBS KW - Raman KW - SEM-EDX KW - degradation Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-32688-0 SN - 2045-2322 VL - 13 ER - TY - GEN A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - About determining reliable etching rates and the role of temperature in kinetic experiments on acidic wet chemical etching of silicon T2 - Physical Chemistry Chemical Physics Y1 - 2023 UR - https://pubs.rsc.org/en/content/articlelanding/2023/cp/d2cp05837e U6 - https://doi.org/10.1039/D2CP05837E SN - 1463-9084 VL - 25 IS - 16 SP - 11387 EP - 11397 ER - TY - GEN A1 - Langner, Thomas A1 - Sieber, Tim A1 - Acker, Jörg T1 - Studies on the deposition of copper in lithium-ion batteries during the deep discharge process T2 - Scientific Reports N2 - End-of-life lithium-ion batteries represent an important secondary raw material source for nickel, cobalt, manganese and lithium compounds in order to obtain starting materials for the production of new cathode material. Each process step in recycling must be performed in such a way contamination products on the cathode material are avoided or reduced. This paper is dedicated to the first step of each recycling process, the deep discharge of lithium-ion batteries, as a prerequisite for the safe opening and disassembling. If pouch cells with different states of charge are connected in series and deep-discharged together, copper deposition occurs preferably in the cell with the lower charge capacity. The current forced through the cell with a low charge capacity leads, after lithium depletion in the anode and the collapse of the solid-electrolyte-interphase (SEI) to a polarity reversal in which the copper collector of the anode is dissolved and copper is deposited on the cathode surface. Based on measurements of the temperature, voltage drop and copper concentration in the electrolyte at the cell with the originally lower charge capacity, the point of dissolution and incipient deposition of copper could be identified and a model of the processes during deep discharge could be developed. KW - lithium ion battery KW - discharge KW - continuum source AAS KW - REM-EXD KW - recycling Y1 - 2021 UR - https://www.nature.com/articles/s41598-021-85575-x U6 - https://doi.org/10.1038/s41598-021-85575-x SN - 2045-2322 IS - 11 ER - TY - GEN A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - Comprehensive stoichiometric studies on the reaction of silicon in HF/HNO3 and HF/HNO3/H2SiF6 mixtures T2 - Physical chemistry, chemical physics KW - silicon KW - etching KW - stoichiometry KW - hydrogen KW - nitrogen oxides KW - mechanism Y1 - 2022 UR - https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp05418j U6 - https://doi.org/10.1039/d1cp05418j SN - 1463-9076 VL - 24 IS - 5 SP - 3094 EP - 3108 ER - TY - GEN A1 - Acker, Jörg A1 - Sieber, Tim A1 - Langner, Thomas A1 - Herold, Steven ED - Andresen, Birger ED - Nygaard, Lars ED - Rong, Harry ED - Tangstad, Merete ED - Tveit, Halvard ED - Page, Ingrid Gamst T1 - The impact of lattice strain on the reactivity of silicon T2 - Silicon for the Chemical and Solar Industry XIV N2 - The present study is focused on the question of how lattice strain mechanically introduced into silicon alters the chemical reactivity of the silicon atoms that are affected by the strain field on a microscopic length scale. The magnitude and local distribution of lattice strain are extracted from confocal Raman microscopy measurements. The reactivity of Si is expressed by the etch rate of Si after treatment with HF–HNO3–H2SiF6 mixtures. Then, the local etch rate is calculated from the local etch depth as determined by confocal microscopy. It has been found that tensile strain leads to the highest enhancement of the etch rate, followed by a compressive strain increase in the etch rate. KW - silicon KW - etching KW - Raman spectroscopy KW - lattice strain KW - stress KW - mechanical activation KW - mechanochemistry KW - confocal microscopy Y1 - 2018 SP - 11 EP - 20 PB - The Norwegian University of Science and Technology CY - Trondheim ER - TY - GEN A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg ED - Andresen, Birger ED - Rong, Harry ED - Tangstad, Merete ED - Tveit, Halvard ED - Page, Ingrid T1 - Advanced insights into the stoichiometry and kinetics of the reaction of silicon in HF/HNO3 and HF/HNO3/H2SiF6 mixtures T2 - Silicon for the Chemical and Solar Industry XV N2 - The stoichiometry and kinetics of wet chemical etching of silicon in HF/HNO3 and HF/HNO3/H2SiF6 mixtures was investigated. The side reactions and main reaction pathways were identified by quantifying all reaction products. The relationship between the concentration of undissociated HNO3 and the consumption of HNO3, as well as the formation of H2 as a function of the mixing ratios were found by varying the etching mixture composition systematically. Based on the etching rates determined, kinetic models for the reaction- and diffusion-controlled reaction mechanism are presented as well as the interrelation between the etchant composition and the transition between reaction- and diffusion-controlled etching. KW - silicon KW - etching KW - Raman KW - etch rate KW - mass spectrometry KW - hydrogen KW - nitrous gases Y1 - 2020 SN - 978-82-997357-9-7 SP - 145 EP - 159 PB - The Norwegian University of Science and Technology CY - Trondheim ER - TY - GEN A1 - Acker, Jörg A1 - Sieber, Tim A1 - Ducke, Jana A1 - Langner, Thomas A1 - Rietig, Anja T1 - Degradation effects on Li(Ni0.33Mn0.33Co0.33)O2 in the recovery of lithium battery cathodes T2 - Advanced Lithium Batteries for Automobile Applications - ABAA 12, Book of Abstracts N2 - The compound Li(Ni0.33Mn0.33Co0.33)O2 (NMC) is the state-of-the-art lithium-ion battery cathode material. Due to the increasing demand NMC is of crucial economically importance for the worldwide emerging market of electromobility. Recycling of end-of-life lithium-ion batteries to recover NMC, in particular of batteries from automotive vehicles, is one future strategy to save costs and to become more independent from the supply of the essential elements Co and Mn. Several concepts for NMC recycling from lithium-ion batteries are based on wet-chemical process steps, in particular, to separate the NMC containing cathode layer from the underlying metal foil. However, NMC is very sensitive against the attack by water and reagents that are added to promote the separation process. The present study deals with the wet-chemical recycling of NMC using aqueous reagent solutions in a under varying process conditions. The recovered NMC samples are characterized in order to study the ongoing degradation at the surface of the NMC particles. In particular, two major degradation pathways are identified: (i) a preferential loss of lithium and nickel and (ii) the formation of passivation layers due to unwanted side reactions. DRIFT measurements are performed to study the NMC surface species after the recovery processes. SEM/EDX mappings are used to detect changes in the chemical composition in the surface region of the chemically treated NMC particles. Finally, a detailed study of the changes in the chemical state at the NMC particle surface is done by Raman microscopy by means of the deconvolution of the recorded spectra into their A1G component (representing the metal-oxide phonons) and into the Eg component (representing the oxide-metal-oxide phonons). As result of this study, the consequences of different wet-chemical process conditions on the quality of the recovered NMC material are discussed. KW - lithium ion battery KW - recycling KW - NMC KW - electromobility KW - degradation KW - Raman spectroscopy KW - cathode Y1 - 2019 SP - 28 PB - Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg CY - Ulm ET - 1. Auflage ER - TY - GEN A1 - Langner, Thomas A1 - Sieber, Tim A1 - Acker, Jörg T1 - Etching Shapes the Topography of Silicon Wafers: Lattice-Strain Enhanced Chemical Reactivity of Silicon for Efficient Solar Cells T2 - ACS Applied Nano Materials N2 - Multiwire sawing of silicon (Si) bricks is the state-of-the-art technology to produce multicrystalline Si solar wafers. The massive indentation of the abrasive Si carbide or diamond particles used leads to a heavily mechanically damaged layer on the wafer surface. Etching the surface layer using typical HF–HNO3–H2SiF6 acid mixtures reveals an unevenly distributed etch attack with etch rates several times higher than known for bulk Si etching. The present study follows the hypothesis that lattice strain, introduced by the sawing process, leads to an increase of the etch rate and determines the topography of the etched wafer, the so-called texture. Scratches were introduced into single crystalline Si surfaces in model experiments, and the magnitude and local distribution of lattice strain were extracted from confocal Raman microscopy measurements. The essential parameter used to describe the local reactivity of Si is the local etch rate, which was derived by confocal microscopy from the local height before and after etching. It was found that the reactivity of Si increases linearly with the magnitude of lattice strain. An increase in tensile strain raises the reactivity of Si significantly higher than an increase of compressive strain. The second decisive parameter is the reactivity of the etch mixture that correlates with the total concentration of the acid mixtures. Diluted acid mixtures with a low reactivity attack only the highest strained Si, whereas more concentrated and, therefore, more reactive acid mixtures can attack even slightly strained Si. Side effects, such as the behavior of amorphous or nanocrystalline Si and the generation of highly reactive intermediary species while etching, are discussed. The presence of unevenly distributed lattice strain of different magnitude and the resulting unevenly distributed reactivity of Si explain the features of a heterogeneous etch attack observed and the resulting topography of the etched wafer surface. KW - lattice strain KW - silicon KW - Raman microscopy KW - confocal microscopy KW - etching KW - reactivity KW - solar cell KW - mechanochemistry Y1 - 2018 U6 - https://doi.org/10.1021/acsanm.8b00906 VL - 1 IS - 8 SP - 4135 EP - 4144 ER -