TY - GEN A1 - Jahn, Stephan F. A1 - Blaudeck, Thomas A1 - Baumann, Reinhard R. A1 - Jakob, Alexander A1 - Ecorchard, Petra A1 - Rüffer, Tobias A1 - Lang, Heinrich A1 - Schmidt, Peer T1 - Inkjet Printing of Conductive Silver Patterns by Using the First Aqueous Particle-Free MOD Ink without Additional Stabilizing Ligands T2 - Chemistry of Materials N2 - The chemical and physical properties of [AgO2C(CH2OCH2)3H] (3) and its use as an aqueous, ligand-free MOD ink (MOD = metal−organic decomposition) for piezo inkjet printing is discussed. The printed, thermal, or photochemical sintered silver features are electrically conductive on glass (2.7 × 107 S m−1) and PET (PET = polyethylene terephthalate) substrates (1.1 × 107 S m−1) corresponding to 43% and 18% of the bulk silver conductivity. Conducted tape tests show the suitability of the ink for particularly polymer substrates. TG-MS studies demonstrate a two-step decomposition for the conversion of 3 to elemental silver. The structure of 3 in the solid state was determined by single X-ray structure determination. Y1 - 2010 UR - http://pubs.acs.org/doi/abs/10.1021/cm9036428 U6 - https://doi.org/10.1021/cm9036428 SN - 1520-5002 VL - 22 IS - 10 SP - 3067 EP - 3071 ER - TY - GEN A1 - Jahn, Stephan F. A1 - Jakob, Alexander A1 - Blaudeck, Thomas A1 - Schmidt, Peer A1 - Lang, Heinrich A1 - Baumann, Reinhard R. T1 - Inkjet printing of conductive patterns with an aqueous solution of [AgO2C(CH2OCH2)3H] without any additional stabilizing ligands T2 - Thin Solid Films N2 - The use of silver(I)-2-[2-(2-methoxyethoxy)ethoxy]acetate, [AgO2C(CH2OCH2)3H], and its application as an aqueous metal-organic decomposition (MOD) inkjet ink is reported. The chemical and physical properties of the silver carboxylate and the ink formulated thereof are discussed. The ink meets all requirements of piezo driven inkjet printing. The printed features were converted into electrically conducting silver patterns by thermal or photo-thermal treatment. The conversion of [AgO2C(CH2OCH2)3H] to elemental silver follows a two-step decomposition as demonstrated by thermogravimetry–mass spectrometry (TG–MS) measurements. The measured conductivities of the printed features on glass and polyethylene-terephthalate (PET) are 2.7 × 107 S m−1 and 1.1 × 107 S m−1, respectively, which correspond to 43% (glass) and 18% (PET) of the bulk silver conductivity. KW - Inkjet printing KW - Silver KW - Carboxylate KW - Ethyleneglycol KW - Flexible electronics Y1 - 2010 UR - http://www.sciencedirect.com/science/article/pii/S0040609010000866 U6 - https://doi.org/10.1016/j.tsf.2010.01.030 SN - 0040-6090 VL - 518 IS - 12 SP - 3218 EP - 3222 ER -