TY - GEN A1 - Kanzler, Michael A1 - Böhm, Christian A1 - Quinkenstein, Ansgar A1 - Steinke, Christian A1 - Landgraf, Dirk T1 - Wuchsleistung der Robinie auf Lausitzer Rekultivierungsstandorten T2 - AFZ - der Wald Y1 - 2014 IS - 5 SP - 35 EP - 37 ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Völkel, Sandra A1 - Jahn, Andreas A1 - Hiess, Andre A1 - Knaut, Martin A1 - Albert, Matthias A1 - Wenger, Christian A1 - Steinke, Olaff A1 - Stephan, Ulf A1 - Röhlecke, Sören A1 - Mikolajick, Thomas T1 - Enhanced Electrical Properties of Optimized Vertical Graphene-Base Hot Electron Transistors T2 - ACS Applied Electronic Materials N2 - The arrival of high-mobility two-dimensional materials like graphene leads to the renaissance of former vertical semiconductor–metal–semiconductor (SMS) hot electron transistors. Because of the monolayer thickness of graphene, improved SMS transistors with a semimetallic graphene-base electrode are now feasible for high-frequency applications. In this study we report about a device that consists of amorphous silicon, graphene, and crystalline silicon. For the first time, this device is fabricated by a four-mask lithography process which leads to significant improvements in the device performance. A strongly increased common-emitter current gain of 2% could be achieved while the on–off ratio improved to 1.6 × 105, which is already higher than predicted theoretically. This could be mainly attributed to better interface characteristics and decreased lateral dimensions of the devices. A cutoff frequency of approximately 26 MHz could be forecasted based on the DC measurements of the device. KW - Graphene KW - Transistor Y1 - 2023 U6 - https://doi.org/10.1021/acsaelm.2c01725 SN - 2637-6113 VL - 5 IS - 3 SP - 1670 EP - 1675 ER -