TY - GEN A1 - Glasauer, Stefan A1 - Shi, Z. T1 - 150 years of Vierordt’s law: The role of experimental protocol T2 - CA: Society for Neuroscience, 2018 Y1 - 2018 UR - https://www.abstractsonline.com/pp8/#!/4649/presentation/4957 UR - https://www.sfn.org/-/media/SfN/Documents/NEW-SfN/Meetings/Neuroscience-2018/Abstracts/Neuroscience-2018-Abstracts/SFN18_Abstract-PDFs---Theme-J.pdf CY - San Diego ER - TY - GEN A1 - Costalago Meruelo, Alicia A1 - Fleuriet, Jérome A1 - Bakst, Leah A1 - Mustari, Michael J. A1 - Glasauer, Stefan T1 - Modeling and Prediction of Sinusoidal Smooth Pursuit using Artificial Neural Networks T2 - 40th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, 2018 Y1 - 2018 UR - http://embc.embs.org/2018/wp-content/uploads/sites/35/2018/08/99118-EMBC-Final-Program.pdf UR - https://embs.papercept.net/conferences/conferences/EMBC18/program/EMBC18_ContentListWeb_3.html#thpos-23_09 PB - IEEE EMBC Hawaii ER - TY - GEN A1 - Glasauer, Stefan T1 - Sensorimotor control of smooth pursuit T2 - Neuroscience 2018 Home N2 - Interaction with the visual world critically depends on when and how we move our eyes. Eye movements, in turn, alter our experience of the world by selecting objects to foveate and tracking objects over time. The interaction between vision and eye movements continues indefinitely, one process modulating the strength and timing of the other. Despite this tight linkage, vision is often studied outside the context of eye movements, during stable fixation. Likewise, eye movements are often studied with sparse visual stimuli and under ideal viewing conditions. A more accurate understanding of vision requires studying perception in the context of eye movements. Different types of eye movements reveal different aspects of how the brain works. The continuous nature of tracking smooth pursuit eye movements, combined with its ubiquitous presence in natural vision, makes it an excellent system in which to analyze perception at fine spatial and temporal resolutions. For example, how does vision change during the transition from fixation to pursuit, and when does the brain allocate resources to account for these changes? In contrast, the ballistic nature of saccades requires analysis divided into discrete epochs, including well before the saccade during the planning stage, during saccade execution, and after the movement. At the neuronal level, how do heterogeneous populations of visual- and saccade-related cells come to represent a single saccade vector during these different epochs? What are the effects on visual perception when saccades and pursuit interact? This symposium will reveal how research incorporating both types of eye movements and visual perception can provide a more ecologically valid account of visual-motor integration and the intervening cognitive processes. This symposium will review innovative approaches and recent advances in understanding the interplay of eye movements and vision. We will take a multifaceted approach to understanding the effects of both exploratory (saccades) and tracking (smooth pursuit) eye movements on vision by using a range of methodologies and animal models (data-driven modeling, clinical populations, and simultaneous recordings of neuronal populations; humans, macaques, and marmosets). This symposium will appeal to vision scientists interested in selective attention, motion processing, neuronal modeling, motor control, neural circuits, and related topics. Our collective goal is to uncover the dynamics of visual perception and the candidate neuronal mechanisms that support eye movements. Y1 - 2018 UR - https://www.abstractsonline.com/pp8/#!/4649/presentation/40985 ER - TY - GEN A1 - Knorr, Alexander G. A1 - Gravot, Céline M. A1 - Glasauer, Stefan A1 - Straka, Hans T1 - Image motion with color contrast suffices to elicit an optokinetic reflex in Xenopus laevis tadpoles T2 - Scientific Reports N2 - The optokinetic reflex is a closed-loop gaze-stabilizing ocular motor reaction that minimizes residual retinal image slip during vestibulo-ocular reflexes. In experimental isolation, the reflex is usually activated by motion of an achromatic large-field visual background with strong influence of radiance contrast on visual motion estimation and behavioral performance. The presence of color in natural environments, however, suggests that chromatic cues of visual scenes provide additional parameters for image motion detection. Here, we employed Xenopus laevis tadpoles to study the influence of color cues on the performance of the optokinetic reflex and multi-unit optic nerve discharge during motion of a large-field visual scene. Even though the amplitude of the optokinetic reflex decreases with smaller radiance contrast, considerable residual eye movements persist at the ‘point of equiluminance’ of the colored stimuli. Given the color motion preferences of individual optic nerve fibers, the underlying computation potentially originates in retinal circuits. Differential retinal ganglion cell projections and associated ocular motor signal transformation might further reinforce the color dependency in conceptual correspondence with head/body optomotor signaling. Optokinetic reflex performance under natural light conditions is accordingly influenced by radiance contrast as well as by the color composition of the moving visual scene. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-87835-2 SN - 2045-2322 VL - 11 ER - TY - GEN A1 - Schröder, Lena A1 - Werder, Dina von A1 - Ramaioli, Cecilia A1 - Wachtler, Thomas A1 - Henningsen, Peter A1 - Glasauer, Stefan A1 - Lehnen, Nadine T1 - Unstable Gaze in Functional Dizziness: A Contribution to Understanding the Pathophysiology of Functional Disorders T2 - Frontiers in Neuroscience N2 - Objective: We are still lacking a pathophysiological mechanism for functional disorders explaining the emergence and manifestation of characteristic, severely impairing bodily symptoms like chest pain or dizziness. A recent hypothesis based on the predictive coding theory of brain function suggests that in functional disorders, internal expectations do not match the actual sensory body states, leading to perceptual dysregulation and symptom perception. To test this hypothesis, we investigated the account of internal expectations and sensory input on gaze stabilization, a physiologically relevant parameter of gaze shifts, in functional dizziness. Methods: We assessed gaze stabilization in eight functional dizziness patients and 11 healthy controls during two distinct epochs of large gaze shifts: during a counter- rotation epoch (CR epoch), where the brain can use internal models, motor planning, and resulting internal expectations to achieve internally driven gaze stabilization; and during an oscillation epoch (OSC epoch), where, due to terminated motor planning, no movement expectations are present, and gaze is stabilized by sensory input alone. Results: Gaze stabilization differed between functional patients and healthy controls only when internal movement expectations were involved [F(1,17) = 14.63, p = 0.001, and partial η2 = 0.463]: functional dizziness patients showed reduced gaze stabilization during the CR (p = 0.036) but not OSC epoch (p = 0.26). Conclusion: While sensory-driven gaze stabilization is intact, there are marked, well- measurable deficits in internally-driven gaze stabilization in functional dizziness pointing at internal expectations that do not match actual body states. This experimental evidence supports the perceptual dysregulation hypothesis of functional disorders and is an important step toward understanding the underlying pathophysiology. Y1 - 2021 U6 - https://doi.org/10.3389/fnins.2021.685590 SN - 1662-453X SN - 1662-4548 VL - 15 ER - TY - GEN A1 - Glasauer, Stefan A1 - Shi, Zhuanghua T1 - The origin of Vierordt's law: The experimental protocol matters T2 - PsyCH Journal N2 - In 1868, Karl Vierordt discovered one type of errors in time perception—an overestimation of short duration and underestimation of long durations, known as Vierordt's law. Here we reviewed the original study in its historical context and asked whether Vierordt's law is a result of an unnatural experimental randomization protocol. Using iterative Bayesian updating, we simulated the original results with high accuracy. Importantly, the model also predicted that a slowly changing random-walk sequence produces less central tendency than a random sequence with the same durations. This was validated by a duration reproduction experiment from two sequences (random and random walk) with the same sampled distribution. The results showed that trial-wise variation influenced the magnitude of Vierordt's law. We concluded that Vierordt's law is caused by an unnatural yet widely used experimental protocol. Y1 - 2021 UR - https://onlinelibrary.wiley.com/doi/10.1002/pchj.464 U6 - https://doi.org/10.1002/pchj.464 SN - 2046-0260 SN - 2046-0252 VL - 10 IS - 5 SP - 732 EP - 741 ER - TY - GEN A1 - Glasauer, Stefan A1 - Shi, Zhuanghua T1 - Differences in beliefs about stimulus generation explain individual perceptual biases T2 - Bernstein Conference 2021, September 21 - 23, 2021 Y1 - 2021 U6 - https://doi.org/10.12751/nncn.bc2021.p052 VL - 2021 ER - TY - GEN A1 - Shirzhiyan, Zahra A1 - Glasauer, Stefan T1 - Late CNV-P2 amplitude as neural index of time interval perception T2 - Bernstein Conference 2021, September 21 - 23, 2021 Y1 - 2021 U6 - https://doi.org/10.12751/nncn.bc2021.p153 VL - 2021 ER - TY - GEN A1 - Kostorz, Kathrin A1 - Flanagin, Virginia A1 - Glasauer, Stefan T1 - Intersubject synchrony of viewers during naturalistic observational learning of a complex bimanual task T2 - Neuroimage: Reports N2 - Watching an instructional video has become a common way to learn a new task. However, we have but a sparse understanding of the neural processes involved during observational learning in naturalistic settings. Recently developed data driven methods for analyzing brain activity provide an opportunity for further investigation. Here, we evaluate intersubject synchrony during fMRI to understand common brain processes during naturalistic observational learning. Participants solitarily watched an instructional video and learned how to fold a paper figure. Three learning runs were sufficient to successfully solve the task. To assess interbrain synchrony, we extended previous principal component (PCA)-based methods to an intersubject principal component analysis (PCA), which offers multiple measures for additional insights into the nature of the synchrony. Using the different metrics of this method, we show a robust synchronous involvement of the action observation execution network (AOEN) in observational learning, between subjects as well as within subjects, regardless of the task or video content. Importantly, additional areas such as the cerebellum, primary motor cortex, control, and sensory integration areas also showed robust synchrony in observational learning. Complimentary to this robust general synchrony, individual regions of the AOEN exhibited task-related differences. Synchrony decreased during the learning process, likely reflecting task state and individual learning strategies. To test the stimulus as a possible source of synchrony, we quantified the temporal structure as the optic flow of the instructional video. Optic flow was strongly related to common activation of the somatomotor areas of the AOEN well beyond visual areas, but could not completely explain synchrony. Thus, although visual motion provides a proxy for meaningful hand actions, our results suggest that intersubject synchrony reflects common cognitive processing during observa- tional learning beyond sensory input. Y1 - 2022 U6 - https://doi.org/10.1016/j.ynirp.2022.100084 SN - 2666-9560 VL - 2 IS - 2 ER - TY - GEN A1 - Glasauer, Stefan A1 - Shi, Zhuanghua T1 - Individual beliefs about temporal continuity explain variation of perceptual biases T2 - Scientific Reports N2 - Perception of magnitudes such as duration or distance is often found to be systematically biased. The biases, which result from incorporating prior knowledge in the perceptual process, can vary considerably between individuals. The variations are commonly attributed to differences in sensory precision and reliance on priors. However, another factor not considered so far is the implicit belief about how successive sensory stimuli are generated: independently from each other or with certain temporal continuity. The main types of explanatory models proposed so far—static or iterative—mirror this distinction but cannot adequately explain individual biases. Here we propose a new unifying model that explains individual variation as combination of sensory precision and beliefs about temporal continuity and predicts the experimentally found changes in biases when altering temporal continuity. Thus, according to the model, individual differences in perception depend on beliefs about how stimuli are generated in the world. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-14939-8 SN - 2045-2322 VL - 12 ER - TY - GEN A1 - Glasauer, Stefan A1 - Straka, Hans T1 - Low Gain Values of the Vestibulo-Ocular Reflex Can Optimize Retinal Image Slip T2 - Frontiers in Neurology N2 - The angular vestibulo-ocular reflex (aVOR) stabilizes retinal images by counter-rotating the eyes during head rotations. Perfect compensatory movements would thus rotate the eyes exactly opposite to the head, that is, eyes vs. head would exhibit a unity gain. However, in many species, but also in elderly humans or patients with a history of vestibular damage, the aVOR is far from compensatory with gains that are in part considerably lower than unity. The reason for this apparent suboptimality is unknown. Here, we propose that low VOR gain values reflect an optimal adaptation to sensory and motor signal variability. According to this hypothesis, gaze stabilization mechanisms that aim at minimizing the overall retinal image slip must consider the effects of (1) sensory and motor noise and (2) dynamic constraints of peripheral and central nervous processing. We demonstrate that a computational model for optimizing retinal image slip in the presence of such constraints of signal processing in fact predicts gain values smaller than unity. We further show specifically for tadpoles of the clawed toad, Xenopus laevis with particularly low gain values that previously reported VOR gains quantitatively correspond to the observed variability of eye movements and thus constitute an optimal adaptation mechanism. We thus hypothesize that lower VOR gain values in elderly human subjects or recovered patients with a history of vestibular damage may be the sign of an optimization given higher noise levels rather than a direct consequence of the damage, such as an inability of executing fast compensatory eye movements. Y1 - 2022 U6 - https://doi.org/10.3389/fneur.2022.897293 SN - 1664-2295 VL - 13 ER - TY - GEN A1 - Glasauer, Stefan A1 - Straka, Hans T1 - Ear pins down evolution of thermoregulation T2 - Nature N2 - An analysis of fossil specimens of the inner ear helps to refine the timeframe of a key transition in vertebrate evolution — when our mammal-like ancestors began to regulate and maintain a high body temperature. Y1 - 2022 U6 - https://doi.org/10.1038/d41586-022-01943-1 IS - 607 SP - 661 EP - 662 ER - TY - GEN A1 - Schröder, Lena A1 - Regnath, Franziska A1 - Glasauer, Stefan A1 - Hackenberg, Anna A1 - Hente, Juliane A1 - Weilenmann, Sonja A1 - Pohl, Daniel A1 - Känel, Roland von A1 - Lehnen, Nadine T1 - Altered sensorimotor processing in irritable bowel syndrome: Evidence for a transdiagnostic pathomechanism in functional somatic disorders T2 - Frontiers in Neuroscience N2 - Objective A recent hypothesis suggests that functional somatic symptoms are due to altered information processing in the brain, with rigid expectations biasing sensorimotor signal processing. First experimental results confirmed such altered processing within the affected symptom modality, e.g., deficient eye-head coordination in patients with functional dizziness. Studies in patients with functional somatic symptoms looking at general, trans-symptomatic processing deficits are sparse. Here, we investigate sensorimotor processing during eye-head gaze shifts in irritable bowel syndrome (IBS) to test whether processing deficits exist across symptom modalities. Methods Study participants were seven patients suffering from IBS and seven age- and gender-matched healthy controls who performed large gaze shifts toward visual targets. Participants performed combined eye-head gaze shifts in the natural condition and with experimentally increased head moment of inertia. Head oscillations as a marker for sensorimotor processing deficits were assessed. Bayes statistics was used to assess evidence for the presence or absence of processing differences between IBS patients and healthy controls. Results With the head moment of inertia increased, IBS patients displayed more pronounced head oscillations than healthy controls (Bayes Factor 10 = 56.4, corresponding to strong evidence). Conclusion Patients with IBS show sensorimotor processing deficits, reflected by increased head oscillations during large gaze shifts to visual targets. In particular, patients with IBS have difficulties to adapt to the context of altered head moment of inertia. Our results suggest general transdiagnostic processing deficits in functional somatic disorders. KW - irritable bowel syndrome (IBS) KW - functional somatic disorders KW - somatoform disorders KW - predictive processing KW - transdiagnostic mechanism KW - gaze shift Y1 - 2022 U6 - https://doi.org/10.3389/fnins.2022.1029126 SN - 1662-453X VL - 16 ER - TY - GEN A1 - Glasauer, Stefan A1 - Straka, Hans T1 - Der Beginn der Warmblütigkeit T2 - Spektrum der Wissenschaft Y1 - 2023 UR - https://www.spektrum.de/magazin/evolution-der-beginn-der-warmbluetigkeit/2085762 SN - 0170-2971 IS - 2 SP - 30 EP - 31 ER - TY - GEN A1 - Werder, Dina von A1 - Regnath, Franziska A1 - Schäfer, Daniel A1 - Jörres, Rudolf A1 - Lehnen, Nadine A1 - Glasauer, Stefan T1 - Post-COVID breathlessness: a mathematical model of respiratory processing in the brain T2 - European Archives of Psychiatry and Clinical Neuroscience N2 - Breathlessness is among the most common post-COVID symptoms. In a considerable number of patients, severe breathlessness cannot be explained by peripheral organ impairment. Recent concepts have described how such persistent breathlessness could arise from dysfunctional processing of respiratory information in the brain. In this paper, we present a first quantitative and testable mathematical model of how processing of respiratory-related signals could lead to breathlessness perception. The model is based on recent theories that the brain holds an adaptive and dynamic internal representation of a respiratory state that is based on previous experiences and comprises gas exchange between environment, lung and tissue cells. Perceived breathlessness reflects the brain’s estimate of this respiratory state signaling a potentially hazardous disequilibrium in gas exchange. The internal respiratory state evolves from the respiratory state of the last breath, is updated by a sensory measurement of CO2 concentration, and is dependent on the current activity context. To evaluate our model and thus test the assumed mechanism, we used data from an ongoing rebreathing experiment investigating breathlessness in patients with post-COVID without peripheral organ dysfunction (N = 5) and healthy control participants without complaints after COVID-19 (N = 5). Although the observed breathlessness patterns varied extensively between individual participants in the rebreathing experiment, our model shows good performance in replicating these individual, heterogeneous time courses. The model assumes the same underlying processes in the central nervous system in all individuals, i.e., also between patients and healthy control participants, and we hypothesize that differences in breathlessness are explained by different weighting and thus influence of these processes on the final percept. Our model could thus be applied in future studies to provide insight into where in the processing cascade of respiratory signals a deficit is located that leads to (post-COVID) breathlessness. A potential clinical application could be, e.g., the monitoring of effects of pulmonary rehabilitation on respiratory processing in the brain to improve the therapeutic strategies. KW - Pharmacology (medical) KW - Biological Psychiatry KW - Psychiatry and Mental health KW - General Medicine Y1 - 2024 U6 - https://doi.org/10.1007/s00406-023-01739-y SN - 0940-1334 ER - TY - GEN A1 - Glasauer, Stefan T1 - Individual differences do matter T2 - Behavioral and Brain Sciences N2 - The integrative experiment design proposal currently only relates to group results, but downplays individual differences between participants, which may nevertheless be substantial enough to constitute a relevant dimension in the design space. Excluding the individual participant in the integrative design will not solve all problems mentioned in the target article, because averaging results may obscure the underlying mechanisms. KW - Behavioral Neuroscience KW - Physiology KW - Neuropsychology and Physiological Psychology Y1 - 2024 U6 - https://doi.org/10.1017/S0140525X2300242X SN - 0140-525X VL - 47 ER - TY - GEN A1 - Schaefer, Daniel A1 - Jörres, Rudolf A1 - Nowak, Dennis A1 - Van Den Bergh, Omer A1 - Bogaerts, Katleen A1 - Glasauer, Stefan A1 - Lehnen, Nadine A1 - Von Werder, Dina T1 - Late breaking abstract : replication and validation of a rebreathing experiment to investigate post-COVID symptoms T2 - European Respiratory Journal Y1 - 2023 U6 - https://doi.org/10.1183/13993003.congress-2023.PA5072 VL - 62 IS - Suppl. 67 PB - European Respiratory Society ER - TY - CHAP A1 - Jahrmann, Margarete A1 - Brandstetter, Thomas A1 - Glasauer, Stefan ED - König, Nikolaus ED - Denk, Natalie ED - Pfeiffer, Alexander ED - Wernbacher, Thomas ED - Wimmer, Simon T1 - Kopfgeld : dark play in an AI based individualized money game T2 - MONEY | GAMES | ECONOMIES N2 - The exemplary low interaction game KOPFGELD, developed in 2023 by Margarete Jahrmann and Stefan Glasauer and first exhibited in a show on the topic of cash at Re:Publica Berlin (RP23.-) defines the price of a player’s face by using the latest developments in AI image generation and face recognition systems. In a theoretical framework we reflect KOPFGELD as a radical art game on “non- consensual play” by AI systems with human entities. In playful settings actual face recognition directly capitalizes biometric data. The emerging AI systems use human play with AI for training of their own systems and turn interaction and attention into cash. Using methods of playful artistic research (LUDIC method), the artistic low interaction game KOPFGELD furthers the understanding of non- consensual play and so-called “dark patterns of game design”. Situating the installation in the context of idle/low interactions and the artistic tradition of “dark play”, we show how actual games, exemplified by a mobile racing game, provide a dark mirror in which we can see glimpses of a future of pervasive gamification driven by non-human players: “you are being played”. Y1 - 2024 SN - 978-3-903470-14-9 SN - 978-3-903470-15-6 U6 - https://doi.org/10.48341/pwsk-m637 SP - 171 EP - 188 PB - University of Krems Press CY - Krems ER - TY - GEN A1 - Shi, Zhuanghua A1 - Gu, Bon-Mi A1 - Glasauer, Stefan A1 - Meck, Warren H. T1 - Beyond Scalar Timing Theory: Integrating Neural Oscillators with Computational Accessibility in Memory T2 - Timing & Time Perception N2 - One of the major challenges for computational models of timing and time perception is to identify a neurobiological plausible implementation that predicts various behavioral properties, including the scalar property and retrospective timing. The available timing models primarily focus on the scalar property and prospective timing, while virtually ignoring the computational accessibility. Here, we first selectively review timing models based on ramping activity, oscillatory pattern, and time cells, and discuss potential challenges for the existing models. We then propose a multifrequency oscilla- tory model that offers computational accessibility, which could account for a much broader range of timing features, including both retrospective and prospective timing. Y1 - 2022 U6 - https://doi.org/10.1163/22134468-bja10059 SN - 2213-4468 SP - 1 EP - 22 ER - TY - GEN A1 - Flanagin, Virginia A1 - Klinkowski, Svenja A1 - Brodt, Svenja A1 - Graetsch, Melanie A1 - Roselli, Carolina A1 - Glasauer, Stefan A1 - Gais, Steffen T1 - The precuneus as a central node in declarative memory retrieval T2 - Cerebral Cortex N2 - Both, the hippocampal formation and the neocortex are contributing to declarative memory, but their functional specialization remains unclear. We investigated the differential contribution of both memory systems during free recall of word lists. In total, 21 women and 17 men studied the same list but with the help of different encoding associations. Participants associated the words either sequentially with the previous word on the list, with spatial locations on a well-known path, or with unique autobiographical events. After intensive rehearsal, subjects recalled the words during functional magnetic resonance imaging (fMRI). Common activity to all three types of encoding associations was identified in the posterior parietal cortex, in particular in the precuneus. Additionally, when associating spatial or autobiographical material, retrosplenial cortex activity was elicited during word list recall, while hippocampal activity emerged only for autobiographically associated words. These findings support a general, critical function of the precuneus in episodic memory storage and retrieval. The encoding-retrieval repetitions during learning seem to have accelerated hippocampus-independence and lead to direct neocortical integration in the sequentially associated and spatially associated word list tasks. During recall of words associated with autobiographical memories, the hippocampus might add spatiotemporal information supporting detailed scenic and contextual memories. Y1 - 2023 U6 - https://doi.org/10.1093/cercor/bhac476 SN - 1460-2199 VL - 33 IS - 10 SP - 5981 EP - 5990 ER -