TY - GEN A1 - Spindler, Mario A1 - Herold, Steven A1 - Acker, Jörg A1 - Brachmann, Erik A1 - Oswald, Steffen A1 - Menzel, Siegfried A1 - Rane, Gerd T1 - Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices T2 - Thin Solid Films N2 - Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > N 300 degrees C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10(-1) Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. KW - SAW devices KW - Tungsten electrodes KW - Magnetron sputtering KW - Wet-chemical etching KW - Lift-off structuring Y1 - 2016 UR - http://www.sciencedirect.com/science/article/pii/S004060901630116X U6 - https://doi.org/10.1016/j.tsf.2016.04.035 VL - 612 SP - 322 EP - 326 ER -