TY - GEN A1 - Sharma, Dikshant A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Cremer, Tilman T1 - Seasonal cold storage with borehole heat exchangers: an application study using numerical simulations T2 - Tagungsband des Jahrestreffens der DECHEMA-Fachgruppen Computational Fluid Dynamics und Wärme- und Stoffübertragung, 6.-8. März 2023, Frankfurt am Main, Deutschland Y1 - 2023 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Sharma_2023_Seasonal_Cold_Storage_BHE.pdf SP - 18 EP - 19 PB - DECHEMA e.V. CY - Frankfurt am Main ER - TY - GEN A1 - Asli, Majid A1 - König, Paul A1 - Sharma, Dikshant A1 - Pontika, Evangelia A1 - Huete, Jon A1 - Konda, Karunakar Reddy A1 - Mathiazhagan, Akilan A1 - Xie, Tianxiao A1 - Höschler, Klaus A1 - Laskaridis, Panagiotis T1 - Thermal management challenges in hybrid-electric propulsion aircraft T2 - Progress in Aerospace Sciences N2 - The utilization of hybrid electric propulsion concept in aviation offers a viable solution to address the limitations posed by the relatively low energy density of batteries in fully electric aviation. These hybrid systems enable the aircraft to achieve a significant range while simultaneously minimizing carbon emissions. While the individual components of a Hybrid Electric Propulsion (HEP) system, such as electric motors and batteries, are designed with high efficiency, their integration presents a significant challenge in the realm of thermal management. Designing an efficient system for managing the substantial waste heat generated by heat sources and effectively transferring it to heat sinks during various flight phases is a complex task. This challenge becomes even more critical as the design must adhere to system weight limits and prioritize aviation safety considerations. In this review article, we performed a systematic review of the challenges related to the key elements in a thermal management system. These elements encompass every component or subsystem that contributes to the thermal management of a generic hybrid-electric propulsion system. This includes electric motors and generators, batteries, heat exchangers, power transmission systems, power distribution systems, storages, fuel cells, cooling fluids and pipes, control system, pumps and fans. Following the identification of the challenges, the paper provides a comprehensive summary of the existing solutions that have been offered and pursued by the community to address the challenges. Furthermore, the paper also discusses emerging technologies related to each element, highlighting their potential in overcoming these challenges. KW - thermal management KW - Hybrid electric propulsion Y1 - 2024 UR - https://www.sciencedirect.com/science/article/pii/S0376042123000830 U6 - https://doi.org/10.1016/j.paerosci.2023.100967 SN - 1873-1724 VL - 144 SP - 1 EP - 29 ER - TY - GEN A1 - König, Paul A1 - Sharma, Dikshant A1 - Konda, Karunakar Reddy A1 - Xie, Tianxiao A1 - Höschler, Klaus T1 - Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications T2 - Energies N2 - The permanent magnet synchronous motor (PMSM) can be a suitable candidate for electrified propulsion in aviation. Despite the very high efficiency, heat dissipation during operation leads to performance limitations. Elevated temperatures in the electrical insulations and the magnets pose a potential safety risk that must be reduced by selective cooling. A comprehensive review is conducted to capture current research interests in cooling methods in PMSM. Cooling methods are described according to their heat transfer mechanism, grouped, and assigned to the components within the motor. Key findings of the literature reviewed are described in the context of PMSM cooling. Information on cooling media and potential combinations of cooling methods in components is gathered. Assessment parameters such as safety, weight, effectiveness, integrability, complexity and cost are defined to enable a subsequent qualitative analysis for six selected cooling methods. A point-weighted evaluation approach, according to VDI 2225, was applied to identify the most promising cooling approach for successful implementation in aviation. KW - electrical machines KW - electric aviation KW - motor cooling KW - PMSM KW - thermal management Y1 - 2023 UR - https://www.mdpi.com/1996-1073/16/22/7524 U6 - https://doi.org/10.3390/en16227524 SN - 1996-1073 VL - 16 IS - 22 ER -