TY - GEN A1 - Topolnitskiy, Evgeniy A1 - Chekalkin, Timofey A1 - Marchenko, Ekaterina A1 - Yasenchuk, Yuri A1 - Kang, Seung-Baik A1 - Kang, Ji-Hoon A1 - Obrosov, Aleksei T1 - Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors T2 - Journal of Functional Biomaterials N2 - In this study, we assessed the outcomes after surgical treatment of thoracic post-excision defects in 15 patients, using TiNi knitted surgical meshes and customized artificial TiNi-based ribs. Methods: Eight patients were diagnosed with advanced non-small cell lung cancer (NSCLC) invading the chest wall, of which five patients were T3N0M0, two were T3N1M0, and one was T3N2M0. Squamous cell carcinoma was identified in three of these patients and adenocarcinoma in five. In two cases, chest wall resection and repair were performed for metastases of kidney cancer after radical nephrectomy. Three-dimensional CT reconstruction and X-ray scans were used to plan the surgery and customize the reinforcing TiNi-based implants. All patients received TiNi-based devices and were prospectively followed for a few years. Results: So far, there have been no lethal outcomes, and all implanted devices were consistent in follow-up examinations. Immediate complications were noted in three cases (ejection of air through the pleural drains, paroxysm of atrial fibrillation, and pleuritis), which were conservatively managed. In the long term, no complications, aftereffects, or instability of the thoracic cage were observed. Conclusion: TiNi-based devices used for extensive thoracic lesion repair in this context are promising and reliable biomaterials that demonstrate good functional, clinical, and cosmetic outcomes. KW - non-small cell lung cancer (NSCLC) KW - thoracic lesion KW - chest wall reconstruction KW - TiNi artificial rib KW - TiNi mesh implant Y1 - 2021 UR - https://www.mdpi.com/2079-4983/12/4/60/htm U6 - https://doi.org/10.3390/jfb12040060 SN - 2079-4983 VL - 12 IS - 4 ER - TY - GEN A1 - Shtin, Valentin A1 - Novikov, Valeriy A1 - Chekalkin, Timofey A1 - Gunther, Victor A1 - Marchenko, Ekaterina A1 - Choynzonov, Evgeniy A1 - Baik Kang, Seung A1 - Jong Chang, Moon A1 - Hoon Kang, Ji A1 - Obrosov, Aleksei T1 - Repair of Orbital Post-Traumatic Wall Defects by Custom-Made TiNi Mesh Endografts T2 - Journal of Functional Biomaterials N2 - Repairs of orbital post-traumatic and extensive malignant defects remain a major surgical challenge, in view of follow-up outcomes. Incorrect surgical management of injured facial structures results in cosmetic, ophthalmic, and social aftereffects. A custom-made knitted TiNi-based mesh (KTNM) endograft was employed to overcome post-surgical complications and post-resected lesions of the orbital area. Preoperative high-resolution computed tomography (CT) imaging and CAD modelling were used to design the customized KTNM in each case. Twenty-five patients underwent surgery utilizing the suggested technique, from 2014 to 2019. In all documented cases, resolution of the ophthalmic malfunction was noted in the early period. Follow-up observation evidenced no relapsed enophthalmos, hypoglobus, or diplopia as late complications. The findings emanating from our clinical observations allow us to claim that the KTNM indicated a high level of biocompatibility. It is simply modified intraoperatively to attach any desired shape/size for implantation and can also be screw-fixed, providing a good supporting ability. The KTNM precisely renders orbitozygomatic outlines and orbital floor, thus recovering the anatomical structure, and is regarded as an attractive alternative to Ti-based meshes and plates. Additionally, we report one of the studied cases, where good functional and cosmetic outcomes have been achieved. KW - diplopia KW - enophthalmos KW - orbital defect repair KW - TiNi mesh Y1 - 2019 UR - https://www.mdpi.com/2079-4983/10/3/27 U6 - https://doi.org/10.3390/jfb10030027 SN - 2079-4983 VL - 10 IS - 3 ER -