TY - GEN A1 - Morales, Carlos A1 - Mahmoodinezhad, Ali A1 - Schubert, Andreas Markus A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Functional ultra-thin oxide films deposited by atomic layer deposition on structured substrates T2 - Verhandlungen der DPG - SurfaceScience21 N2 - In the last decades, atomic layer deposition (ALD) has gained prominence in the materials and surface science communities owing to its high potential for integration as a scalable process in microelectronics. ALD's largest strengths are its well-controlled layer-by-layer deposition and growth conformity on 3D structures. Yet, the ALD technique is also well known to lead to amorphous and defective, non-stoichiometric thin films, resulting in modified materials properties that may even preferentially be used in certain applications. To study these issues, we have developed an in-situ ALD reactor attached to an X-ray photoelectron spectroscopy (XPS) system, capable of switching between both pump and flow-type operation. This novel tool allows to cover the entire range of compounds and recipes used in ALD, thus clarifying the role of such defects at different deposition stages, growth conditions and film/substrate interfaces. To exemplify these sorts of studies, we show the deposition of Al2O3 5-10 nm films on nanostructured Si, and their use as substrates for functional CeOx ALD deposits. KW - Atomic layer deposition KW - sensors KW - structured substrates KW - in-situ X-ray photoelectron spectroscopy Y1 - 2021 UR - https://www.dpg-verhandlungen.de/year/2021/conference/surfacescience/part/o/session/74/contribution/5 VL - 2021 PB - Deutsche Physikalische Gesellschaft e.V. CY - Bad Honnef ER -