TY - GEN A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Schrape, Sven A1 - Golze, Mark A1 - Knöpke, Martin T1 - Simulation fluidgedämpfter Strukturschwingungen mittels partitionierter Fluid-Struktur-Kopplung T2 - Forum der Forschung Y1 - 2005 SN - 0947-6989 VL - 9 IS - 18 SP - 79 EP - 86 ER - TY - THES A1 - Schrape, Sven T1 - Zur Simulation von Fluid-Struktur-Wechselwirkungen schwingender Verdichtergitter mittels kommerzieller Software N2 - Die vorliegende Arbeit hat zum Ziel, dem Stand der Wissenschaft und Technik entsprechende uni- und bidirektional gekoppelte Berechnungsmethoden unter Verwendung einer partitionierten Kopplung kommerzieller FE- und CFD-Programme am Lehrstuhl Strukturmechanik und Fahrzeugschwingungen der Brandenburgischen Technischen Universität Cottbus zu etablieren. Dazu erfolgt bezüglich der Kopplungsverfahren eine Überprüfung der Funktionalität am akademischen Beispiel einer querangeströmten, elastischen Platte. Vor dem Hintergrund der intensiven Forschung des Lehrstuhls auf dem Gebiet der Strukturdynamik integraler Verdichterlaufräder (Blisks) schließt sich die Validierung des eingesetzten Strömungslösers hinsichtlich einer transsonischen, instationären Verdichterströmung innerhalb schwingender Schaufelgitter an. Letztlich wird das grundlegende aeroelastische Verhalten eines realen Hochdruckverdichterlaufrades anhand eines unverstimmten, zweidimensionalen Modells analysiert. Ein Vergleich der Methoden zur Berechnung aeroelastischer Parameter ist Bestandteil der Untersuchungen. Basierend auf bidirektional gekoppelten Ergebnissen wird abschließend eine Verifizierung von abgeleiteten äquivalenten aerodynamischen Elementen innerhalb eines mechanischen, unverstimmten Ersatzmodells vorgestellt. N2 - The present work aims on establishing state of the art, partitioned, uni- and bidirectional coupling methods between commercial FE- and CFD-codes at the chair of Structural Mechanics and Vehicle Vibration Technology (Brandenburg Technical University Cottbus). Therefore a basic validation of the coupling procedures is carried out concerning an academical example of a flexible cantilever plate which is transversal flowed by an artificial fluid. Due to the intensive research of the chair onto the structural dynamic behaviour of blade integrated disks (blisks) in the past a validation of the used flow solver with respect to transsonic flows through a vibrating compressor cascade configuration is conducted. Finally the principle aeroelastic behaviour of a real high pressure compressor rotor stage is investigated by deriving a suitable two dimensional and tuned compressor cascade model. A comparison of different methods to predict aeroelastic parameter is part of the investigations. Based on results of a bidirectional coupled simulation a verification of inferred equivalent aerodynamic elements within a tuned mass-spring-damper model is figured out in conclusion. KW - Flugtriebwerk KW - Hochdruckverdichter KW - Blisk KW - Schaufelschwingung KW - Aeroelastizität Y1 - 2012 SN - 978-3-8440-1541-6 PB - Shaker CY - Aachen ER - TY - CHAP A1 - Maywald, Thomas A1 - Kühhorn, Arnold A1 - Schrape, Sven T1 - Experimental Validation of a Model Update Procedure Focusing on Small Geometric Deviations T2 - ECCOMAS VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, June 5-10, 2016 N2 - This contribution presents a model update procedure and its experimental validation using the example of a blade integrated disk rotor. This so called blisk is discretized using the finite element method. It is well known that numerical blisk models based on the ideal tuned design show major differences in structural dynamic behavior compared to the real rotor. In this context a modification of the mechanical simulation model should lead to a better accordance of numerical results and the real blisk characteristics. The described model update procedure utilizes data of an optical 3D measurement system. Using this data enables to identify geometric deviations between the ideal design and its real counterpart. Within the update procedure the originally tuned finite element mesh is modified in order to match the measured geometry of the real part. This is done by defining several morph regions. The outer surface nodes of these morph regions change their position along the surface normal vector until they meet the defined deviation constraint. Based on eigenvalue calculations employing free boundary conditions the sensitivity of structural dynamic behavior is shown with respect to small geometric changes. Finally computed eigenvalues and eigenvectors of the updated simulation model are compared with vibration measurement data. A laser Doppler vibrometer is used to detect the vibration responses of the impact excited structure. All experiments are carried out under technical vacuum conditions in order to minimize ambient air damping. In the context of an experimental modal analysis this low damping condition helps to identify more natural frequencies of the investigated structure. This leads to a much more efficient model validation. Y1 - 2016 UR - https://www.eccomas2016.org/proceedings/pdf/7386.pdf ER - TY - GEN A1 - Franz, Falco A1 - Kühhorn, Arnold A1 - Giersch, Thomas A1 - Schrape, Sven A1 - Figaschewsky, Felix T1 - Influence of Inlet Distortions on the Forced Vibration of a High Pressure Compressor Rig T2 - ASME 2020 Turbo Expo - Virtual Conference, September 2020 N2 - The accurate prediction of blade vibrations is a key factor for the development of reliable turbomachines. This paper focusses on forced vibrations. The excitation frequency is an integer multiple of the rotor revolution frequency, which is commonly called engine order. Aerodynamic excitation of blades is created by stator wakes or the potential fields of downstream obstacles, which usually leads to high engine orders correlating to the number of vanes. Resonance crossings appear at higher frequencies corresponding to higher modes. Besides high engine orders, low engine orders not related to the number of vanes may exist. They can be caused by a disturbance of the perfect cyclic symmetry of the flow pattern due to geometry variations or inlet distortions. Inlet distortions result from installation effects, maneuvers or crosswind. Low engine orders affect fundamental modes at high engine speeds. High static loads due to centrifugal forces combined with dynamic excitation and low damping may lead to unacceptable high stresses. This paper aims at getting a better understanding of the simulative prediction of low engine order excitation with special focus on inlet distortions. Under investigation is a 4.5 stage research compressor rig, for which an extensive amount of test data is available. A three dimensional CFD-model of the compressor is used to compute the forcings generated by different distortion patterns. The first two stages are modeled as a full-annulus, which allows to fully resolve the spatial content of the inlet distortion patterns. The rotor 2 blisk is of special interest in this investigation. The propagation of the distortion after stage 2 with rotor 2 is not of interest, therefore the downstream stages are modeled as single passages in order to save computational time. The distortion patterns are the outcome of traversals of different screens with total pressure probes. During distortion measurements, the screens located in the inlet duct were rotated relative to the fixed instrumentation. The traversals in resonance of the first bending mode of rotor 2 with a low engine order four showed a dependency of the screen angle on the vibration amplitude. Acceleration and deceleration maneuvers through this resonance were conducted with screen angles set to those of smallest and highest response. Vibration amplitudes of the blisk rotor are measured by strain gauges and a blade tip timing system. Simulation results are compared against vibration measurements. Aerodynamic damping is calculated with the influence coefficient method. The effects of mistuning are included in the calculation of vibration amplitudes via a subset of nominal system modes model to give a meaningful comparison against real engine hardware. The mistuning distribution of the blisk was identified at rest for the fundamental bending mode. The presence of a 2nd excitation mechanism of unknown source explains the observed test data. This unknown source is not included in the CFD model. A direct comparison of simulation and measurement is still possible by leveraging the observed superposition effects of both excitation sources. The consequent approach is to identify and substract the forcing due to the unknown source, leaving only the delta forcing due to inlet distortions. Y1 - 2020 UR - https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/4675/application/46115 ER - TY - GEN A1 - Gambitta, Marco A1 - Kühhorn, Arnold A1 - Schrape, Sven T1 - Geometrical Variability Modelling of Axial Compressor Blisk Aerofoils and Evaluation of Impact on the Forced Response Problem T2 - ASME 2020 Turbo Expo - Virtual Conference, September 2020 N2 - The manufacturing process always produces onto the components a certain amount of geometrical uncertainty. This results inevitably in the introduction of a certain amount of variability within the manufactured parts. Even if the differences are small, all the resulting geometries will differ from each other. The present work focuses on the effect of the manufacturing geometrical variability on the high pressure compressor of a turbofan engine for civil aviation. The deviations of the geometry over the axial compressor blades are studied and modelled for the representation in the computational models. Such variability is of particular interest for the forced response problem, where small deviations of the geometry from the ideal nominal model can imply significant differences in the vibrational responses. The information regarding the geometrical mistuning is extracted from a set of manufactured components surface scans of a blade integrated disk (blisk) rotor. The measured geometries are analyzed over a large amount of set radial sections, defining a set of opportune parameters to represent the deviations from the nominal design. A spline fit of the parameters over the radial sections allows the creation of a set of variables describing the geometry. The dimension of the variables domain is reduced using the principal component analysis approach, this allows to obtain an optimal subset of geometrical modes as linear combination of the above mentioned parameters. The reconstruction of the modelled geometries is performed for the implementation in complex CFD and FEM solvers. This is done via the application of the modelled delta nominal-to-measure geometrical offset to the hot geometry of the desired test case. The generated model allows a stochastic representation of the variability, providing an optimal set of variables to represent it. Moreover the approach as defined allows to apply the modelled variability to different blades, e.g. different stators or rotors, utilizing the nominal geometry as input. The aeroelastic analyses considering geometry based mistuning is carried on a test-rig case, focusing on how such variability can affect the modal forcing generated on the blades. A validated CFD model is used to extract the force generated by the unsteady pressure field over the selected vibrational mode shapes of the rotor blades. The blade mode shapes are extracted form a FEM model of the whole blisk and the blades displacements are mapped over the CFD model nodes. The uncertainty quantification of the geometrical variability effect on the modal forcing is performed utilizing Monte Carlo methods. A reduced model for the CFD solution is employed, utilizing a single passage multi blade row which assumes a time-space periodicity solving the governing equations in the frequency domain. This allows for conducting an uncertainty quantification considering the large domain of the variables used to describe the geometries compared to the computational resources needed for the single solution. The unsteady modal forcing is studied as amplitude and phase shift for the different engine orders (frequencies arising from the engine working condition as higher harmonics of the shaft speed). In particular the scatter of the main engine orders forcing amplitudes for the manufactured blades can be compared with the nominal responses to predict the possible amplification due to the geometrical variability. Finally the results are compared to a larger computational model to assess the influence of multiple variable blades in the assembly. Y1 - 2020 UR - https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/5296/application/46289 ER - TY - CHAP A1 - Hanschke, Benjamin A1 - Kühhorn, Arnold A1 - Schrape, Sven A1 - Giersch, Thomas T1 - Consequences of Borescope Blending Repairs on Modern HPC Blisk Aeroelasticity T2 - Proceedings of ISROMAC 2017, Maui, Hawaii, December 16-21, 2017 N2 - Objective of this paper is to analyse the consequences of borescope blending repairs on the aeroelastic behaviour of a modern HPC blisk. To investigate the blending consequences in terms of aerodynamic damping and forcing changes, an exemplary blending of a rotor blade is modelled. Steady state flow parameters like total pressure ratio, polytropic efficiency and the loss coefficient are compared. Furthermore, aerodynamic damping is computed utilising the AIC approach for both geometries. Results are confirmed by SPF simulations for specific nodal diameters of interest. Finally, an unidirectional forced response analysis for the nominal and the blended rotor is conducted to determine the aerodynamic force exciting the blade motion. Fourier transformation of the forcing signal yields to the frequency content as well as the forcing amplitudes. As a result of the present analysis, the amplification of expected blade vibration amplitude is computed. KW - Aeroelasticity KW - Compressor Blisk KW - Blending Repair KW - Forced Response KW - Arodynamic Damping Y1 - 2017 UR - http://isromac-isimet.univ-lille1.fr/index.php?rubrique=abstract17_&num=2 ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Giersch, Thomas A1 - Schrape, Sven T1 - Analysis of Mistuned Forced Response in an Axial High Pressure Compressor Rig With Focus on Tyler-Sofrin Modes T2 - ISABE 2017, ISABE-2017-22614, Manchester, September 3.-8., 2017 Y1 - 2017 PB - ISABE ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Hönisch, Peter A1 - Giersch, Thomas A1 - Schrape, Sven T1 - Model Update and Validation of a Mistuned High Pressure Compressor Blisk T2 - Proceedings of ISABE 2017, ISABE-2017-22568, Manchester, September 3.-8., 2017 Y1 - 2017 UR - https://isabe2017.org/ PB - ISABE ER - TY - CHAP A1 - Giersch, Thomas A1 - Figaschewsky, Felix A1 - Hönisch, Peter A1 - Kühhorn, Arnold A1 - Schrape, Sven T1 - Numerical Analysis and Validation of the Rotor Blade Vibration Response Induced by High Pressure Compressor Deep Surge T2 - ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics Düsseldorf, Germany, June 16–20, 2014, Paper GT2014-26295 N2 - The following paper presents a numerical analysis of a deep surge cycle of a 4.5 stage research compressor. The resulting unsteady loads are used to determine the response of two particular rotor blade rows that are then compared to strain gauge data from measurements. Within a deep surge cycle the compressor experiences a rapid change of the flow field from forward to reversed flow. This rapid breakdown is linked to a new mean blade load. Hence, the rapid change in blade loads are able to excite fundamental blade modes similar to an impulse load. The resulting vibration magnitudes might reach critical levels. This paper demonstrates two different approaches to evaluate the unsteady flow during a surge cycle. The first uses a three dimensional, time accurate finite volume solver for viscid compressible flows to calculate the transient surge cycle of the compressor. The compressor itself is represented by a multi-blade-row sector model. The second approach makes use of the same solver and compressor domain to determine steady state characteristics of the HPC in forward, stalled and reversed flow. Based on these characteristics an one dimensional finite volume solver for inviscid compressible flows was developed to determine the transient compressor behavior. The one dimensional solver represents the compressor by source terms that are linked to the previously determined steady state characteristics. Copyright © 2014 by Rolls-Royce Deutschland Ltd & Co KG KW - Compressors KW - High pressure (Physics) KW - Numerical analysis Y1 - 2014 SN - 978-0-7918-4577-6 U6 - https://doi.org/10.1115/GT2014-26295 PB - ASME CY - New York, NY ER - TY - GEN A1 - Weber, Robby A1 - Kühhorn, Arnold A1 - Klauke, Thomas A1 - Schrape, Sven T1 - The Effect of Sand Erosion on a Compressor Blade and its Modal Properties T2 - Proceedings of ASME Turbo Expo 2020, Turbomachinery Technical Conference and Exposition, GT2020, September 21-25, 2020, Virtual, Online N2 - The wear and damage of High-Pressure Compressor (HPC) blades due to erosion or Foreign Object Damage (FOD) have a significant influence on HPC aerodynamic performance, vibration resistance against High-Cycle Fatigue (HCF) and thus component lifetime. The changes in airfoil geometry reduce the overall engine efficiency. Furthermore extended off-wing engine maintenances due to blade failures are increasing the cost of ownership. The safe operation of every engine within a reduced number of shop visits requires a reliable prediction of future deterioration. This enables the optimization of services and off-wing time. One contribution to this is a better understanding of the component’s dynamics and based on this providing an improved wear modeling to reliably predict the remaining lifetime and the decreased efficiency. This contribution determines the material removal of HPC blades due to sand erosion. Originally, this stage was built as a blisk (Blade Integrated Disk). After sand erosion test completion, the blisk was cut into segments containing one airfoil only. First, the material removal is determined for ten blades of one exemplary rotor. A blue light fringe projector is employed to identify the geometrical differences between the eroded blades and the nominal design. Second, realistic finite element models are generated to enable comparable modal analyses of eroded blades. This procedure suffers from unavoidable and mostly random imperfections due to the manufacturing process, which significantly affects the blade surface before the erosion test can be conducted. Therefore, an already published approach is implemented in the third step to predict the blade surface after erosion based on nominal blade design. The investigation is completed by comparing measured and predicted surfaces. Finally, the aforementioned tool is employed to predict the locations and intensities of the material losses and the accompanying change in modal properties of this compressor blade concerning operational time. Y1 - 2020 ER -