TY - GEN A1 - König, Rosalie A1 - Kiebist, Jan A1 - Kalmbach, Johannes A1 - Herzog, Robert A1 - Schmidtke, Kai-Uwe A1 - Kellner, Harald A1 - Ullrich, René A1 - Jehmlich, Nico A1 - Hofrichter, Martin A1 - Scheibner, Katrin T1 - Novel unspecific peroxygenase from Truncatella angustata catalyzes the synthesis of bioactive lipid mediators T2 - Microorganisms N2 - Lipid mediators, such as epoxidized or hydroxylated eicosanoids (EETs, HETEs) of arachidonic acid (AA), are important signaling molecules and play diverse roles at different physiological and pathophysiological levels. The EETs and HETEs formed by the cytochrome P450 enzymes are still not fully explored, but show interesting anti-inflammatory properties, which make them attractive as potential therapeutic target or even as therapeutic agents. Conventional methods of chemical synthesis require several steps and complex separation techniques and lead only to low yields. Using the newly discovered unspecific peroxygenase TanUPO from the ascomycetous fungus Truncatella angustata, 90% regioselective conversion of AA to 14,15-EET could be achieved. Selective conversion of AA to 18-HETE, 19-HETE as well as to 11,12-EET and 14,15-EET was also demonstrated with known peroxygenases, i.e., AaeUPO, CraUPO, MroUPO, MweUPO and CglUPO. The metabolites were confirmed by HPLC-ELSD, MS1 and MS2 spectrometry as well as by comparing their analytical data with authentic standards. Protein structure simulations of TanUPO provided insights into its substrate access channel and give an explanation for the selective oxyfunctionalization of AA. The present study expands the scope of UPOs as they can now be used for selective syntheses of AA metabolites that serve as reference material for diagnostics, for structure-function elucidation as well as for therapeutic and pharmacological purposes KW - eicosanoids KW - lipid mediators KW - EETs KW - HETEs KW - unspecific peroxygenases KW - human drug KW - metabolites KW - biocatalysis KW - TanUPO Y1 - 2022 UR - https://www.mdpi.com/2076-2607/10/7/1267 U6 - https://doi.org/10.3390/microorganisms10071267 SN - 2076-2607 VL - 10 IS - 7 SP - 1 EP - 18 ER - TY - GEN A1 - Ingenbosch, Kim N. A1 - Quint, Stephan A1 - Dyllick-Brenzinger, Melanie A1 - Wunschik, Dennis S. A1 - Kiebist, Jan A1 - Süss, Philipp A1 - Liebelt, Ute A1 - Zuhse, Ralf A1 - Menyes, Ulf A1 - Scheibner, Katrin A1 - Mayer, Christian A1 - Opwis, Klaus A1 - Gutmann, Jochen S. A1 - Hoffmann-Jacobsen, Kerstin T1 - Singlet oxygen generation by peroxidases and peroxygenases for chemo-enzymatic synthesis T2 - ChemBioChem N2 - Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet‐oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet‐oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet‐oxygen formation. All peroxidases and peroxygenases show singlet‐oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye‐decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet‐oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen. KW - Peroxygenase Y1 - 2021 U6 - https://doi.org/10.1002/cbic.202000326 SN - 1439-7633 SN - 1439-4227 VL - 22 IS - 2 SP - 398 EP - 407 ER - TY - CHAP A1 - Kiebist, Jan A1 - Hofrichter, Martin A1 - Zuhse, Ralf A1 - Scheibner, Katrin ED - Grunwald, Peter T1 - Oxyfunctionalization of Pharmaceuticals by Fungal Peroxygenases T2 - Pharmaceutical biocatalysis : chemoenzymatic synthesis of active pharmaceutical ingredients N2 - Throughout drug discovery and development, metabolic studies are driven by an increased interest to understand the potential for side effects and drug-drug interactions. Peroxygenases are a subclass of peroxide-dependent enzymes that catalyze the transfer of a peroxide-borne oxygen to diverse substrates. The selective oxyfunctionalization of organic molecules is one of the major challenges for the chemical community. Benzylic hydroxylation is one of the most frequently observed reactions of unspecific peroxygenases due to the activated nature of benzylic C–H bonds. The hydroxylation of aromatic rings is a common reaction in the formation of drug metabolites by P450s in mammals including humans. In the liver, P450s facilely metabolize secondary and tertiary amines as well as ethers to the corresponding dealkylated metabolites. The regio- and stereoselective direct introduction of oxygen functionalities into complex pharmaceuticals is a great challenge for organic chemists. KW - Peroxygenase Y1 - 2019 SN - 978-981-4800-80-8 SN - 978-1-00-070757-1 SP - 643 EP - 673 PB - Jenny Stanford Publishing Pte. Ltd. CY - Singapore ET - 1. Auflage ER - TY - GEN A1 - Wang, Mengyi A1 - Wamp, Sabrina A1 - Gibhardt, Johannes A1 - Holland, Gudrun A1 - Schwedt, Inge A1 - Schmidtke, Kai-Uwe A1 - Scheibner, Katrin A1 - Halbedel, Sven A1 - Commichau, Fabian M. T1 - Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system T2 - Environmental microbiology N2 - The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes. KW - Listeria monocytogenes KW - c-di-AMP metabolism Y1 - 2022 UR - https://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.16084?af=R U6 - https://doi.org/10.1111/1462-2920.16084 SN - 1462-2920 VL - 24 IS - 9 SP - 4466 EP - 4488 ER -