TY - GEN A1 - Ghosh, Sujoy Kumar A1 - Sinha, Tridib Kumar A1 - Xie, Mengying A1 - Bowen, Christopher Rhys A1 - Garain, Samiran A1 - Mahanty, Biswajit A1 - Roy, Krittish A1 - Henkel, Karsten A1 - Schmeißer, Dieter A1 - Kim, Jin Kuk A1 - Mandal, Dipankar T1 - Temperature–Pressure Hybrid Sensing All-Organic Stretchable Energy Harvester T2 - ACS Applied Electronic Materials N2 - The design and development of intrinsically stretchable all-organic self-powered sensors concurrently perceiving temperature and pressure remain a challenge but deliver an exciting platform to realize environmentally friendly wearable electronics. In this approach, a biomimetic all-organic stretchable energy harvester is designed by a xylitol-added poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS/Xyl) film as a compatible overlay electrode with polyaniline-reinforced one-dimensional aligned poly(vinylidene fluoride) hybrid electroactive soft nanowires. The gradient of elastic modulus between the electrode and the active nanowire component enables the all-organic device to manifest excellent power-generating performance under external temperature fluctuation (∼3 μW/m2 under ΔT ∼ 92 K) and mechanical force (∼31 μW/cm2 at 30 N). Importantly, the device renders simultaneous energy scavenging of temperature and pressure changes under pressing and stretching conditions (∼20%). The excellent mechanosensitivity (∼100 mV/N), fast response time (∼1 ms), outstanding mechanical and thermal stability, and good temperature resolution <10 K enable the harvester to act as an epidermal sensor, which simultaneously detects and discriminates both subtle pressure and thermal deviations exposed to an epidermis surface. The real-time recording and wireless transferring of physiological signals to a smartphone indicate an effective way to realize remote healthcare monitoring for early intervention. KW - all-organic KW - piezoelectric KW - pyroelectric KW - energy harvester KW - sensor KW - healthcare monitoring Y1 - 2021 U6 - https://doi.org/10.1021/acsaelm.0c00816 SN - 2637-6113 VL - 3 IS - 1 SP - 248 EP - 259 ER - TY - GEN A1 - Roy, Krittish A1 - Ghosh, Sujoy Kumar A1 - Sultana, Ayesha A1 - Garain, Samiran A1 - Xie, Mengying A1 - Bowen, Christopher Rhys A1 - Henkel, Karsten A1 - Schmeißer, Dieter A1 - Mandal, Dipankar T1 - A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers T2 - ACS Applied Nano Materials N2 - This paper reports a self-powered,flexible, piezo- and pyro-electric hybrid nanogenerator (NG) device that can be fixed on different locations of human skin for detecting static and dynamic pressure variations and can also monitor temperature fluctuations during the respiration process. An efficient and cost-effective fabrication strategy has been developed to create electrospun poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) nanofibers, which are used to create a highly sensitive wearable pressure sensor and pyroelectric breathing sensor. The sensor can accurately and rapidly detect pressures as low as 10 Pa with a high sensitivity (4.3 V/kPa), a key performance indicator for wearable sensors. Importantly, the sensor exhibits a high sensitivity to bending and stretching by finger, wrist, and elbow. The pressure sensor is also highly sensitive to vocal vibrations when attached to the human throat. The device can generate a maximum output power density of∼6.2 mW/m2 when subjected to a compressive stress, which enhances its range of applications. Moreover, it is demonstrated that doping with GO improves the pyroelectric energy harvesting and sensing performance of the device under repeated temperature fluctuations. The PVDF/GO-based nanogenerator has a maximum pyroelectric output power density of∼1.2 nW/m2 and can sense temperature changes during respiration, which makes it promising as a pyroelectric breathing sensor. It is demonstrated that processing of the PVDF-GO self-powered multifunctional pressure and pyroelectric breathing sensor can be up-scaled for fabricating compact and high-performance electronic skins for application in health monitoring, motion detection, and portable electronics. KW - piezo- and pyro-electric hybrid nanogenerator KW - poly(vinylidenefluoride) (PVDF)/graphene oxide (GO) nanofibers KW - wearable pressure sensor KW - breathing sensor Y1 - 2019 U6 - https://doi.org/10.1021/acsanm.9b00033 SN - 2574-0970 VL - 2 IS - 4 SP - 2013 EP - 2025 ER -