TY - GEN A1 - Herzog, Renè A1 - Nolte, Jörg A1 - Walther, Karsten T1 - Analyzing the Real-Time Behavior of Deeply Embedded Event Driven Systems T2 - LCTES'07, proceedings of the 2007 Conference on Languages, Compilers, and Tools for Embedded Systems, San Diego, California, USA, June 13 - 15, 2007 Y1 - 2007 SN - 978-1-59593-632-5 SP - 149 EP - 151 PB - ACM CY - New York ER - TY - CHAP A1 - Hofrichter, Martin A1 - Kellner, Harald A1 - Herzog, Robert A1 - Karich, Alexander A1 - Liers, Christiane A1 - Scheibner, Katrin A1 - Kimani, Virginia Wambui A1 - Ullrich, René ED - Nevalainen, Helena T1 - Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. T2 - Grand Challenges in Fungal Biotechnology KW - Peroxygenase Y1 - 2020 SN - 978-3-030-29540-0 SN - 978-3-030-29541-7 U6 - https://doi.org/10.1007/978-3-030-29541-7 SN - 2367-1017 SN - 2367-1025 SP - 369 EP - 403 PB - Springer Nature CY - Cham ET - 1. Auflage ER - TY - GEN A1 - Hofrichter, Martin A1 - Kellner, Harald A1 - Herzog, Robert A1 - Karich, Alexander A1 - Kiebist, Jan A1 - Scheibner, Katrin A1 - Ullrich, René T1 - Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases T2 - Antioxidants N2 - Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects. KW - unspecific peroxygenase KW - monooxygenase KW - peroxidases KW - hydroxylation KW - epoxidation KW - dealkylation Y1 - 2022 UR - https://www.mdpi.com/2076-3921/11/1/163 U6 - https://doi.org/10.3390/antiox11010163 SN - 2076-3921 VL - 11 IS - 1 SP - 1 EP - 21 ER - TY - GEN A1 - König, Rosalie A1 - Kiebist, Jan A1 - Kalmbach, Johannes A1 - Herzog, Robert A1 - Schmidtke, Kai-Uwe A1 - Kellner, Harald A1 - Ullrich, René A1 - Jehmlich, Nico A1 - Hofrichter, Martin A1 - Scheibner, Katrin T1 - Novel unspecific peroxygenase from Truncatella angustata catalyzes the synthesis of bioactive lipid mediators T2 - Microorganisms N2 - Lipid mediators, such as epoxidized or hydroxylated eicosanoids (EETs, HETEs) of arachidonic acid (AA), are important signaling molecules and play diverse roles at different physiological and pathophysiological levels. The EETs and HETEs formed by the cytochrome P450 enzymes are still not fully explored, but show interesting anti-inflammatory properties, which make them attractive as potential therapeutic target or even as therapeutic agents. Conventional methods of chemical synthesis require several steps and complex separation techniques and lead only to low yields. Using the newly discovered unspecific peroxygenase TanUPO from the ascomycetous fungus Truncatella angustata, 90% regioselective conversion of AA to 14,15-EET could be achieved. Selective conversion of AA to 18-HETE, 19-HETE as well as to 11,12-EET and 14,15-EET was also demonstrated with known peroxygenases, i.e., AaeUPO, CraUPO, MroUPO, MweUPO and CglUPO. The metabolites were confirmed by HPLC-ELSD, MS1 and MS2 spectrometry as well as by comparing their analytical data with authentic standards. Protein structure simulations of TanUPO provided insights into its substrate access channel and give an explanation for the selective oxyfunctionalization of AA. The present study expands the scope of UPOs as they can now be used for selective syntheses of AA metabolites that serve as reference material for diagnostics, for structure-function elucidation as well as for therapeutic and pharmacological purposes KW - eicosanoids KW - lipid mediators KW - EETs KW - HETEs KW - unspecific peroxygenases KW - human drug KW - metabolites KW - biocatalysis KW - TanUPO Y1 - 2022 UR - https://www.mdpi.com/2076-2607/10/7/1267 U6 - https://doi.org/10.3390/microorganisms10071267 SN - 2076-2607 VL - 10 IS - 7 SP - 1 EP - 18 ER -