TY - GEN A1 - Froeschke, Samuel A1 - Bestha, Kranthi Kumar A1 - Fucke, Rico A1 - Schiemenz, Sandra A1 - Popov, Alexey A1 - Naumann, Marco A1 - Knupfer, Martin A1 - Giebeler, Lars A1 - Wolf, Daniel A1 - Kizhake Malayil, Ranjith Kumar A1 - Sivan, Saramgi Chencheriparambil A1 - Grafe, Hans-Joachim A1 - Gräßler, Nico A1 - Corredor, Laura T. A1 - Wolter, Anja U. B. A1 - Büchner, Bernd A1 - Schmidt, Peer A1 - Hampel, Silke T1 - Structural and Magnetic Transitions Caused by Dimer Formation in the CrCl3–MoCl3 Solid Solution T2 - Chemistry of Materials N2 - In this work, we apply the concept of solid solutions to the two 2D transition metal trihalides CrCl3 and MoCl3. While CrCl3 belongs to the magnetically active CrX3 family, the magnetism in MoCl3 is intrinsically suppressed by the formation of aligned Mo–Mo dimers, which also distort the regular honeycomb lattice that is typical for the 2D transition metal trihalides. We report suitable synthesis conditions for the gapless solid solution and crystal growth by chemical vapor transport. The CrCl3–MoCl3 solid solution was initially synthesized at 650 °C for 100 h under addition of MoCl5 as mineralizer, and bulk crystals were subsequently grown by vapor transport in a temperature gradient from 600 °C → 550 °C for 60 h. The obtained solid solution exhibits multiple composition-dependent phase transitions at room temperature, as confirmed by powder X-ray diffraction measurements. The possible presence of Mo–Mo dimers in the solid solution was further investigated by infrared, Raman, electron energy loss, and nuclear quadrupole resonance spectroscopies. The combined results indicate that the Mo–Mo dimers are present over a wide range of compositions. Their orientation changes from parallel alignment for compositions from 70% ≤ c(Mo3+) ≤ 100% to random orientation for samples with c(Mo3+) < 70% content, which significantly affects the course of lattice parameters. Finally, the magnetic properties of the powder samples show a correlation between the Mo3+ content and the transition temperature into the low-temperature phase. Y1 - 2024 U6 - https://doi.org/10.1021/acs.chemmater.3c03109 SN - 0897-4756 SN - 1520-5002 VL - 36 IS - 9 SP - 4240 EP - 4253 ER -