TY - GEN A1 - Turabov, Dashqin A1 - Evdokimov, Anton A1 - Nikitin, Alexander A1 - Ossenbrink, Ralf A1 - Michailov, Vesselin T1 - Vorhersage des Elektrodenverschleißes beim Widerstandspunktschweißen von Aluminium durch dynamische Widerstandsmessung T2 - DVS Congress 2023, Große Schweißtechnische Tagung, DVS Campus ; Kurzfassungen der Vorträge der Veranstaltung in Essen vom 11. bis 14. September 2023 ; (Langfassungen der Beiträge auf USB-Karte) N2 - Das Widerstandspunktschweißen ist ein weit verbreitetes Schweißverfahren, insbesondere bei der Karosserieherstellung in der Automobilbranche. Im Hinblick auf den Leichtbau werden zunehmend Aluminiumlegierungen verwendet. Das Hauptproblem beim Widerstandspunktschweißen von Aluminiumlegierungen ist der schnelle Elektrodenverschleiß. Dadurch wird die Qualität und Effizienz des Schweißprozesses beeinträchtigt. Die Elektrodenstandmenge ist erreicht, wenn die Schweißverbindung eines der Qualitätskriterien nicht erfüllt. Um die Elektrodenstandmenge zu ermitteln, werden in der Industrie im Rahmen der Schweißnahtqualifizierung zeit- und ressourcenaufwändige Methoden, u. a. zerstörende Prüfmethoden, verwendet. In dieser Arbeit wird eine Methode zur Vorhersage des kritischen Elektrodenverschleißes beim Aluminiumschweißen durch Messung des dynamischen Widerstandes vorgeschlagen. In umfangreichen Versuchsreihen an einer automobiltypischen Al-Legierung der 5000er Gruppe wurden dynamische Widerstandsmessungen durchgeführt. Aus den Widerstandsmesswerten konnte ein Indikator ermittelt werden, welcher auf das Auftreten von Poren in Schweißverbindung und auf einen bald auftretenden kritischen Elektrodenverschleiß hinweist. Y1 - 2023 UR - https://www.dvs-ev.de/call4papers/abstract.cfm?vid=116&pid=7816 SN - 978-3-96144-230-0 VL - 389 / 2023 SP - 780 EP - 787 PB - DVS Media GmbH CY - Düsseldorf ER - TY - GEN A1 - Kotlarski, Georgi A1 - Ormanova, Maria A1 - Ossenbrink, Ralf A1 - Nikitin, Alexander A1 - Doynov, Nikolay A1 - Valkov, Stefan A1 - Michailov, Vesselin T1 - Fabrication and Characterization of Wire Arc Additively Manufactured AlSi5 Structures T2 - Metals N2 - For the purpose of this research, single track details were manufactured in the shape of thin walls with a length of 100 mm and a height of 80 mm. Two welding speeds were chosen for this experiment–13.3 mm/s and 20.0 mm/s corresponding to the following heat inputs: 120 J/mm and 80 J/mm. The gas metal arc welding (GMAW) method was used for the build-up of the specimens in the cold arc pulse mode. The structure of the specimens was studied using X-ray diffraction (XRD) analysis carried out with CuKα radiation with a wavelength of 1.5406 Ǻ, optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Furthermore, the Vickers hardness of the samples was determined using a ZwickRoell DuraScan 10/20 G5 unit at a force of 1 N. A preferred crystallographic orientation towards the (200) plane was observed in all cases, however a vastly textured structure was observed with inclusions of peaks in the (111), (220), and (311) crystallographic planes. The full width at half maximum (FWHM) of samples taken from different stages of build-up was calculated indicating an increase of the dislocation density at the more advanced stages of specimen growth. Despite that an increase of the hardness was observed towards the top of both specimens. This is attributed to the change in the structure of the αAl + Si formations from an irregular one at the bottom of the specimens, towards a fibrous one at the top. The results are discussed in regard to the optimization of the build-up process during wire arc additive manufacturing (WAAM). KW - wire arc additive manufacturing KW - Al4043 KW - AlSi5 KW - heat input KW - microstructure KW - eutectic formations Y1 - 2022 SN - 2075-4701 VL - 12 IS - 11 ER - TY - GEN A1 - Köhler, Marcel A1 - Nikitin, Alexander A1 - Sonnenfeld, Peter A1 - Ossenbrink, Ralf A1 - Jüttner, Sven T1 - Wire Arc Additive Manufacturing of Aluminum Foams Using TiH2-Laced Welding Wires T2 - Materials N2 - Composite materials made from aluminum foam are increasingly used in aerospace and automotive industries due to their low density, high energy absorption capacity, and corrosion resistance. Additive manufacturing processes offer several advantages over conventional manufacturing methods, such as the ability to produce significantly more geometrically complex components without the need for expensive tooling. Direct Energy Deposition processes like Wire Arc Additive Manufacturing (WAAM) enable the additive production of near-net-shape components at high build rates. This paper presents a technology for producing aluminum foam structures using WAAM. This paper’s focus is on the development of welding wires that are mixed with a foaming agent (TiH2) and produce a foamed weld metal as well as their processing using MIG welding technology. KW - MIG welding KW - wire arc additive manufacturing KW - direct energy deposition KW - aluminum foam KW - titanium hydride KW - foaming agent KW - metal-cored wires KW - continuous powder extrusion KW - energy absorption Y1 - 2024 U6 - https://doi.org/10.3390/ma17133176 SN - 1996-1944 VL - 17 IS - 13 PB - MDPI AG ER -