TY - GEN A1 - Klein, Marten A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Transition to the ultimate regime in a stochastic model for radiatively driven turbulent convection T2 - Verhandlungen der Deutschen Physikalischen Gesellschaft - BPCPPDYSOE21 KW - stochastic turbulence modeling KW - turbulent thermal convection KW - one-dimensional turbulence KW - heat transfer Y1 - 2021 UR - https://www.dpg-verhandlungen.de/year/2021/conference/bpcppdysoe/part/dy/session/2/contribution/1?lang=en ER - TY - GEN A1 - Klein, Marten A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Transition to the ultimate regime in a stochasticmodel for thermal convection with internal sources N2 - It is well established that heat transfer in turbulent Rayleigh–Bénard convection and angular momentum transfer in turbulent Taylor–Couette flow are similar in nature. This similarity manifests itself by isomorphic scaling laws for corresponding flow regimes. However, it is not clear at present if this similarity extends to flows with internal sources and different types of boundary conditions. Internal sources may occur, for example, due to radiative heating in dry or condensation in moist convection, or due to internal wave breaking and mean flow excitation in rotating Taylor–Couette-like flows. In this study, heat transfer in radiatively-driven turbulent Rayleigh–Bénard convection is investigated using the stochastic one-dimensional-turbulence model (ODT). A Boussinesq fluid of Prandtl number 1 is confined between two horizontal adiabatic no-slip walls that are located at z = 0 and H, respectively. The fluid is exposed to constant background gravity that points in vertical (−z) direction. A flow is driven by radiative heating from below yielding the local heating rate Q(z) = (P/l) exp(−z/l), where P is the prescribed mean total heat flux and l the absorption length that controls the thermal boundary layer thickness. ODT resolves all relevant scales of the flow, including molecular-diffusive scales, along a vertical one-dimensional domain, whereas stochastically sampled eddy events represent the effects of turbulent advection. ODT results reproduce and extrapolate available reference experiments of Lepot et al. (Proc. Natl. Acad. Sci. USA, 115, 2018, pp. 8937–8941) and Bouillaut et al. (J. Fluid Mech., 861, 2019, R5) in particular capturing the turbulent transition from the classical to the ‘ultimate’ regime. For these regimes, the exponent values in N u ∼ Ra^p scaling are found to be p ≈ 0.33 and p ≈ 0.55, respectively, in agreement with measured values. Joint probabilities of turbulent eddy size and location suggest that the regime transition is associated with a suppression of small-scale near-wall turbulent motions. The latter observation is found consistent with recent direct numerical simulations of heat transfer between permeable walls (Kawano et al., J. Fluid Mech., 914, 2021, A13). KW - one-dimensional turbulence KW - turbulent thermal convection KW - heat transfer KW - high Rayleigh number Y1 - 2021 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Klein_poster_ictw21.pdf UR - https://www.b-tu.de/media/video/Transition-to-the-ultimate-regime-in-a-stochastic-model-for-thermal-convection-with-internal-sources/52aa69a52b8ab3ef29cc1d8bf9f20243 UR - https://pof.tnw.utwente.nl/ictw/schedule.html ER - TY - GEN A1 - Klein, Marten A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Stochastic modeling of transient boundary layers in high-Rayleigh-number thermal convection, 25th International Congress of Theoretical and Applied Mechanics (ICTAM 20+1) N2 - One-dimensional turbulence (ODT) modeling is used to investigate the boundary layer in high-Rayleigh-number thermal convection for a notionally infinite horizontal layer of fluid. The model formulation distinguishes between turbulent advection, which is modeled by a stochastic process, and deterministic molecular diffusion to capture relevant vertical transport processes (including counter-gradient fluxes). For this study, statistical homogenization is applied to the two horizontal dimensions so that we use ODT as stand-alone tool. We show that the model yields mean and fluctuation temperature profiles that are in several respects consistent with available reference data. Furthermore, the profile of a surrogate for the fluctuation velocity is reminiscent of canonical wall turbulence. Y1 - 2021 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Klein_poster_ictam21.pdf UR - https://www.b-tu.de/media/video/Stochastic-modeling-of-transient-boundary-layers-in-high-Rayleigh-number-thermal-convection/f511d6b395472dc729543db3aa02dbc9 UR - https://www.ictam2020.org/assets/pdf/ICTAM2021-Fulllist-26-08.pdf ER - TY - GEN A1 - Kerstein, Alan R. A1 - Lignell, David O. A1 - Schmidt, Heiko A1 - Starick, Tommy A1 - Wheeler, Isaac A1 - Behrang, Masoomeh T1 - Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows T2 - 2021 AIChE Annual Meeting N2 - Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations. Y1 - 2021 UR - https://plan.core-apps.com/aiche2021/event/002309c77cf108fff1a6a8a101a07ebd ER - TY - GEN A1 - Starick, Tommy A1 - Behrang, Masoomeh A1 - Lignell, David O. A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Turbulent mixing simulation using the Hierarchical Parcel-Swapping (HiPS) model T2 - Technische Mechanik N2 - Turbulent mixing is an omnipresent phenomenon that permanently affects our everyday life. Mixing processes also plays an important role in many industrial applications. The full resolution of all relevant flow scales often poses a major challenge to the numerical simulation and requires a modeling of the small-scale effects. In transported Probability Density Function (PDF) methods, the simplified modeling of the molecular mixing is a known weak point. At this place, the Hierarchical Parcel-Swapping (HiPS) model developed by A.R. Kerstein [J. Stat. Phys. 153, 142-161 (2013)] represents a computationally efficient and novel turbulent mixing model. HiPS simulates the effects of turbulence on time-evolving, diffusive scalar fields. The interpretation of the diffusive scalar fields or a state space as a binary tree structure is an alternative approach compared to existing mixing models. The characteristic feature of HiPS is that every level of the tree corresponds to a specific length and time scale, which is based on turbulence inertial range scaling. The state variables only reside at the base of the tree and are understood as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub-trees at rates determined by turbulent time scales associated with the sub-trees. The mixing of adjacent fluid parcels is done at rates consistent with the prevailing diffusion time scales. In this work, a standalone HiPS model formulation for the simulation of passive scalar mixing is detailed first. The generated scalar power spectra with forced turbulence shows the known scaling law of Kolmogorov turbulence. Furthermore, results for the PDF of the passive scalar, mean square displacement and scalar dissipation rate are shown and reveal a reasonable agreement with experimental findings. The described possibility to account for variable Schmidt number effects is an important next development step for the HiPS formulation. This enables the incorporation of differential diffusion, which represents an immense advantage compared to the established mixing models. Using a binary structure allows HiPS to satisfy a large number of criteria for a good mixing model. Considering the reduced order and associated computational efficiency, HiPS is an attractive mixing model, which can contribute to an improved representation of the molecular mixing in transported PDF methods. KW - differential diffusion KW - hierarchical parcel-swapping KW - HiPS KW - mixing model KW - scalar mixing Y1 - 2023 U6 - https://doi.org/10.24352/UB.OVGU-2023-044 SN - 0232-3869 VL - 43 IS - 1 SP - 49 EP - 58 ER - TY - GEN A1 - Sonia, G. A1 - Richter, E. A1 - Brunner, F. A1 - Denker, A. A1 - Lossy, R. A1 - Lenk, Friedrich A1 - Opitz-Coutureau, J. A1 - Mai, M. A1 - Schmidt, J. A1 - Zeimer, U. A1 - Wang, L. A1 - Baskar, K. A1 - Weyers, M. A1 - Würfl, Joachim A1 - Tränkle, Günther T1 - High energy irradiation effects on AlGaN/GaN HFET devices T2 - Semiconductor Science and Technology N2 - The effect of proton, carbon, oxygen and krypton irradiation on AlGaN HFET devices has been studied. Irradiation was performed at 68 and 120 MeV with fluences in the range from 1 × 10^7 to 1 × 10^13 cm2 . Before and after irradiation, dc and pulsed I – V characteristics, loadpull and S -parameters of the AlGaN HFET devices were measured. A thick GaN reference layer was characterized by x-ray diffraction, photoluminescence and Hall measurements before and after irradiation. Proton, carbon and oxygen irradiation show no degradation in devices while krypton irradiation shows a small change at a fluence of 1 × 10 10 cm2 in the device characteristics. The device results are correlated with the thick GaN results. Y1 - 2007 U6 - https://doi.org/10.1088/0268-1242/22/11/007 SN - 0268-1242 VL - 22 IS - 11 SP - 1220 EP - 1224 ER - TY - GEN A1 - Lignell, David O. A1 - Lansinger, Victoria B. A1 - Medina Méndez, Juan Ali A1 - Klein, Marten A1 - Kerstein, Alan R. A1 - Schmidt, Heiko A1 - Fistler, Marco A1 - Oevermann, Michael T1 - One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application T2 - Theoretical and Computational Fluid Dynamics N2 - The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects. KW - Cylindrical ODT Y1 - 2018 U6 - https://doi.org/10.1007/s00162-018-0465-1 SN - 0935-4964 SN - 1432-2250 VL - 32 IS - 4 SP - 495 EP - 520 ER - TY - GEN A1 - Klein, Marten A1 - Freire, Livia S. A1 - Lignell, David O. A1 - Kerstein, Alan R. A1 - Schmidt, Heiko T1 - Ein stochastischer Ansatz zur Modellierung fluktuierender Oberflächenflüsse in turbulenten Grenzschichten T2 - Kurzfassungen der Meteorologentagung DACH N2 - Im Konferenzbeitrag wird auf die Formulierung des stochastischen Modells eingegangen und gezeigt, dass neben Scherspannungen auch Druck-, Coriolis- und Auftriebskräfte berücksichtigt werden können. Das Modell wird beispielhaft als unabhängiges, numerisches Werkzeug angewendet, um fluktuierende Oberflächenflüsse in turbulenten Kanalströmungen sowie stabilen und konvektiven Grenzschichten zu untersuchen. Es werden sowohl glatte, als auch raue bzw. bewachsene (poröse) Oberflächen betrachtet. Anhand neuer Ergebnisse wird demonstriert, dass der Modellansatz in der Lage ist, Referenzdaten zufriedenstellend zu reproduzieren und extrapolieren. Daneben werden aktuelle Arbeiten zur Kopplung des stochastischen Modellansatzes mit Large-Eddy-Simulationen vorgestellt. Es wird gezeigt, dass die stochastische Modellierung oberflächennaher, subgitterskaliger Schwankungen in der Lage ist, wandnahe Turbulenzspektren zu reproduzieren und den filterbasierten Modellfehler bei ansonsten fester Gitterauflösung zu verringern. KW - one-dimensional turbulence KW - stochastic modeling KW - turbulent boundary layer KW - turbulent convection KW - rotating and stratified flows Y1 - 2021 UR - https://meetingorganizer.copernicus.org/DACH2022/DACH2022-22.html U6 - https://doi.org/10.5194/dach2022-22 VL - 2022 SP - 1 EP - 1 PB - Copernicus ER - TY - CHAP A1 - Jozefik, Zoltan A1 - Kerstein, Alan R. A1 - Schmidt, Heiko T1 - Incorporation of acceleration effects into the One-dimensional-turbulence model, with application to turbulent combustion and shock-turbulence interactions T2 - 15th European Turbulence Conference 2015 August 25-28th, 2015, Delft, The Netherlands N2 - One-dimensional turbulence (ODT) is a stochastic simulation in which 3D turbulence effects are captured on a notional 1D line of sight by introducing instantaneous spatial rearrangements (maps) that represent advection by notional turbulent eddies. These eddy events incorporate the possibility of kinetic-energy changes that are equal and opposite to changes of other forms of energy such as the gravitational potential energy change due to a rearrangement of a vertical density profile. This illustrates that motion aligned with an applied force, in this case gravitation g, can be associated with energy change. Using this principle, we 1) present a model of turbulence interaction with the dilatational acceleration caused by thermal expansion in flames and show results for a turbulent counterflow flame with comparison to DNS and 2) present a model for shock-induced turbulence and show results for mixing width growth in a shock tube with comparison to experiments. Y1 - 2015 UR - http://www.etc15.nl/proceedings/proceedings/documents/356.pdf ER - TY - GEN A1 - Starick, Tommy A1 - Behrang, Masoomeh A1 - Lignell, David O. A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Turbulent mixing simulation using the Hierarchical Parcel Swapping (HiPS) model T2 - Proceedings of the Conference on Modelling Fluid Flow (CMFF’22) KW - differential diffusion, hierarchical parcel swapping, HiPS, mixing model, passive scalar mixing Y1 - 2022 UR - https://www.cmff.hu/papers/CMFF22_Final_Paper_PDF_96.pdf SN - 978-963-421-881-4 SP - 1 EP - 7 PB - Department of Fluid Mechanics, University of Technology and Economics CY - Budapest, Hungary ER - TY - CHAP A1 - Glawe, Christoph A1 - Schulz, Falko T. A1 - Gonzalez-Juez, Esteban D. A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - ODTLES Simulations of Turbulent Flows through Heated Channels and Ducts T2 - 8th International Symposium on turbulence and shear flow phenomena (TSFP8), 28–30 August 2013, Poitiers, France, vol. 2 N2 - A widely occurring problem in fluid dynamics either in engineering or e.g. hydrology is the turbulent transport through channels and ducts. ODTLES, a stochastic based multi-scale and multi-dimensional model, is a promising tool to describe these flows even including scalar proper- ties like temperature. We are quantifying the ability of ODTLES to describe the heated channel flow with respect to the Prandtl number and the flow through squared ducts with respect to the Reynolds number. Y1 - 2013 UR - http://www.tsfp-conference.org/proceedings/2013/v2/htc.pdf SP - 1 EP - 6 ER - TY - CHAP A1 - Glawe, Christoph A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - ODTLES: A Multi-scale Ansatz for highly turbulent flows T2 - 15 The European turbulence conference, 25-28 august, 2015, Delft, The Netherland N2 - We use ODTLES, a multi-dimensional extension of the One-Dimensional-Turbulence model (ODT). ODT describes turbulent advection on a 1D sub-domain using a stochastic process for turbulent advection. These 1D sub-domains are coupled to obtain a 3D approach. ODTLES is applied to channel flow. Preliminary results for the pdf of the wall shear stress are compared to DNS. Y1 - 2015 UR - http://www.etc15.nl/proceedings/proceedings/documents/431.pdf ER - TY - GEN A1 - Movaghar, Amirreza A1 - Linne, Mark A1 - Oevermann, Michael A1 - Meiselbach, Falko T. A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Numerical investigation of turbulent-jet primary breakup using One-Dimensional Turbulence T2 - International Journal of Multiphase Flow N2 - Primary breakup to form droplets at liquid surfaces is an important fundamental process to study as it determines the initial properties of the dispersed phase, which affect mixing rates, secondary breakup, droplet collisions, and flow separation within the dispersed flow region. Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. How- ever, it is of paramount importance in many technical applications, e.g. fuel injection in engines and spray painting. This paper presents a numerical investigation of primary breakup of a turbulent liquid jet in still air at standard conditions using the one-dimensional turbulence (ODT) modeling framework. ODT is a stochastic model that simulates turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. An important feature of ODT is the resolution of all relevant scales, both temporal and spatial. The restriction to one spatial dimension in ODT permits affordable high resolution of interfacial and single-phase property gradients, which is key to capturing the local behavior of the breakup process and allows simulations at high Reynolds and Weber numbers that are currently not accessible to direct numerical simulations (DNS). This paper summarizes our extensions of the ODT model to simulate geometrically simple jet breakup problems, including representations of Rayleigh wave breakup, turbulent breakup, and shear-driven breakup. Each jet breakup simulation consists of a short temporal channel section to initialize a turbulent velocity profile at the nozzle exit followed by an adjacent jet section. The simulations are carried out for jet exit Reynolds number of 11,500, 23,000, 46,000 and 92,000 while the Weber number is varied within the range 102–107. We present results on breakup statistics including spatial locations of droplet release, droplet sizes and liquid core length. The results on primary breakup are compared to experimental results and models. Y1 - 2017 SN - 1879-3533 VL - 89 SP - 241 EP - 254 ER - TY - GEN A1 - Glawe, Christoph A1 - Schmidt, Heiko A1 - Kerstein, Alan R. A1 - Klein, Rupert T1 - XLES Part II: From Extended Large Eddy Simulation to ODTLES T2 - arXiv.org N2 - In turbulence research and flow applications, turbulence models like RaNS (Reynolds averaged Navier-Stokes) models and LES (Large Eddy Simulation) are used. Both models filter the governing flow equations. Thus a scale separation approach is introduced for modeling purposes with the large scales simulated using a numerical scheme while smaller scales are assumed to be less important and might be modeled more or less easily. Unfortunately small scales are frequently of big importance, e.g. in reactive flows, wall bounded flows, or flows with significant Prandtl or Schmidt number effects. Recent alternatives to these standard models are the class of models based on the one-dimensional turbulence (ODT) idea, like ODTLES. The ability of ODT to capture highly turbulent flows (recently up to Reτ=6×105) allows ODTLES to realize 3D resolutions basically independent of the turbulent intensity. In two papers we provide a formal theory and application of an innovative modeling strategy for highly turbulent flows in domains of moderate complexity: In part I (see Glawe et al. (2015)) a new general filtering approach, called XLES (extended LES), is introduced. Contrary to LES, XLES is based on 2D filtering of the governing equations, whereby additional small scale terms are interpreted numerically. In this work a new ansatz for the ODTLES model is introduced as one special approach in the XLES family of models by incorporating the ODT model into XLES. The ODT model introduces microstructures not captured by the XLES filtered equations. To illustrate the ODTLES model capabilities, turbulent channel and duct flows up to friction Reynolds number Reτ=10000 are studied. Y1 - 2015 UR - http://arxiv.org/abs/1506.04938 ER - TY - GEN A1 - Klein, Marten A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Transition to the ultimate regime in a stochastic model for thermal convection with internal sources Y1 - 2021 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Klein_poster_ipam21.pdf CY - IPAM Workshop: Transport and Mixing in Complex and Turbulent Flows (CTF2021), University of California, Los Angeles, CA, USA ER - TY - GEN A1 - Jozefik, Zoltan A1 - Kerstein, Alan R. A1 - Schmidt, Heiko A1 - Lyra, Sgouria A1 - Kolla, Hemanth A1 - Chen, Jackie H. T1 - One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS T2 - Combustion and Flame Y1 - 2014 SN - 1556-2921 VL - 162 IS - 8 SP - 2999 EP - 3015 ER - TY - CHAP A1 - Glawe, Christoph A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - ODTLES: Mulitscale turbulence modeling and buoyant application T2 - Book of abstracts, 7th European Postgraduate Fluid Dynamics Conference, Ilmenau, Germany, 14th - 17th, July 2014 Y1 - 2014 CY - Ilmenau ER - TY - GEN A1 - Schmidt, Heiko A1 - Kerstein, Alan R. A1 - Nédélec, Renaud A1 - Wunsch, Scott A1 - Sayler, Ben J. T1 - One-dimensional turbulence simulation of a laboratory analog of radiatively induced cloud-top entrainment Y1 - 2011 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/2011_Metstroem_Berlin.pdf N1 - MetStröm Conference 2011 on Multiple Scales in Fluid Dynamics and Meteorology ER - TY - CHAP A1 - Glawe, Christoph A1 - Klein, Rupert A1 - Kerstein, Alan R. A1 - Schmidt, Heiko T1 - Towards the simulation of gravity waves using the One-Dimensional Turbulence model T2 - EGU General Assembly 2012, held 22-27 April, 2012 in Vienna Y1 - 2012 UR - http://meetingorganizer.copernicus.org/EGU2012/EGU2012-4821.pdf N1 - EGU2012-4821 ER - TY - CHAP A1 - Stollberg, Christian A1 - Schmidt, M. A1 - Namango, Saul A1 - Pohl, R. A1 - Ay, Peter T1 - Conditioning, Identification and Automatic Sorting of Plastic Automotive Parts for Productive Recycling T2 - International Automobile Recycling Congress, IARC 2002, Geneva, Switzerland, March 13 - 15, 2002, proceedings KW - automobile recycling Y1 - 2002 PB - ICM AG CY - Muri ER -