TY - GEN A1 - Dziallas, Giannino A1 - Fatemi, Adel A1 - Korndörfer, Falk A1 - Peczek, Anna A1 - Kissinger, Dietmar A1 - Zimmermann, Lars A1 - Malignaggi, Andrea A1 - Kahmen, Gerhard T1 - A Monolithically Integrated Optical Bandpass Receiver in 0.25μm SiGe BiCMOS Technology for Microwave-Photonic Applications T2 - 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC), November 9-11, 2020 ONLINE Y1 - 2020 SN - 978-1-7281-8436-4 SN - 978-1-7281-8437-1 U6 - https://doi.org/10.1109/A-SSCC48613.2020.9336119 ER - TY - GEN A1 - Dziallas, Giannino A1 - Fatemi, Adel A1 - Peczek, Anna A1 - Zimmermann, Lars A1 - Malignaggi, Andrea A1 - Kahmen, Gerhard T1 - A 56-Gb/s Optical Receiver with 2.08-µA Noise Monolithically Integrated into a 250-nm SiGe BiCMOS Technology T2 - IEEE Transactions on Microwave Theory and Techniques Y1 - 2022 U6 - https://doi.org/10.1109/TMTT.2021.3104838 SN - 0018-9480 SN - 1557-9670 VL - 70 IS - 1 ER - TY - GEN A1 - Mai, Christian A1 - Marschmeyer, Steffen A1 - Peczek, Anna A1 - Kroh, Aleksandra A1 - Jose, Josmy A1 - Reiter, Sebastian A1 - Fischer, Inga Anita A1 - Wenger, Christian A1 - Mai, Andreas T1 - Integration Aspects of Plasmonic TiN-based Nano-Hole-Arrays on Ge Photodetectorsin a 200mm Wafer CMOS Compatible Silicon Technology T2 - ECS Transactions N2 - In this work we present the progress in regard to the integration of a surface plasmon resonance refractive index sensor into a CMOS compatible 200 mm wafer silicon-based technology. Our approach pursues the combination of germanium photodetectors with metallic nanohole arrays. The paper is focused on the technology development to fabricate large area photodetectors based on a modern design concept. In a first iteration we achieved a leakage current density of 82 mA/cm2 at reverse bias of 0.5 V and a maximum optical responsivity of 0.103 A/W measured with TE polarized light at λ = 1310 nm and a reversed bias of 1 V. For the realization of nanohole arrays we used thin Titanium nitride (TiN) layers deposited by a sputtering process. We were able to produce very homogenous TiN layers with a thickness deviation of around 10 % and RMS of 1.413 nm for 150 nm thick TiN layers. KW - plasmonics KW - nanohole array KW - germanium detector Y1 - 2022 U6 - https://doi.org/10.1149/10904.0035ecst SN - 1938-5862 VL - 109 IS - 4 SP - 35 EP - 46 ER -