TY - GEN A1 - Zanotti, Tommaso A1 - Puglisi, Francesco Maria A1 - Milo, Valerio A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Ossorio, Óscar G. A1 - Wenger, Christian A1 - Pavan, Paolo A1 - Olivo, Piero A1 - Ielmini, Daniele T1 - Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays T2 - IEEE Transactions on Electron Devices N2 - Logic-in-memory (LiM) circuits based on resistive random access memory (RRAM) devices and the material implication logic are promising candidates for the development of low-power computing devices that could fulfill the growing demand of distributed computing systems. However, these circuits are affected by many reliability challenges that arise from device nonidealities (e.g., variability) and the characteristics of the employed circuit architecture. Thus, an accurate investigation of the variability at the array level is needed to evaluate the reliability and performance of such circuit architectures. In this work, we explore the reliability and performance of smart IMPLY (SIMPLY) (i.e., a recently proposed LiM architecture with improved reliability and performance) on two 4-kb RRAM arrays based on different resistive switching oxides integrated in the back end of line (BEOL) of the 0.25- μm BiCMOS process. We analyze the tradeoff between reliability and energy consumption of SIMPLY architecture by exploiting the results of an extensive array-level variability characterization of the two technologies. Finally, we study the worst case performance of a full adder implemented with the SIMPLY architecture and benchmark it on the analogous CMOS implementation. KW - RRAM KW - in-memory computing KW - HfO2 Y1 - 2020 U6 - https://doi.org/10.1109/TED.2020.3025271 SN - 0018-9383 SN - 1557-9646 VL - 67 IS - 11 SP - 4611 EP - 4615 ER -