TY - GEN A1 - Shapovalov, Oleg A1 - Ost, Lucas A1 - Kuke, Felix A1 - Doynov, Nikolay A1 - Ambrosio, Marcello A1 - Seidlitz, Holger A1 - Michailov, Vesselin T1 - Entwicklung und Analyse einer Fügestrategie für FKV/Metall-Mischverbindungen auf Basis der CMT-Pinschweißtechnik T2 - Joining Plastics N2 - Dieser Beitrag stellt eine Entwicklung, Anpassung und Untersuchung der neuartigen Pinschweißtechnik zur Verbindung thermoplastischer Faserkunststoffverbunde mit metallischen Fügepartnern dar. Die untersuchte Fügetechnik bietet, im Vergleich zu anderen Verfahren, neben einer einseitigen Zugänglichkeit, ein hohes Leichtbaupotenzial. An Multimaterial-Einzelpinverbindungen wurden die CMT-Pinschweißbarkeit charakterisiert und unterschiedliche Fügestrategien erprobt und ausgewertet. Als Bewertungskriterien wurden das Schweißgut sowie der Faser- und Matrixerhalt in Abhängigkeit von den Schweißparametern untersucht. Die mechanische Beanspruchbarkeit der mit dem entwickelten Verfahren erstellten Verbindungen wurde in Scherzugversuchen ermittelt. An Mehrpinverbindungen wurde anschließend der Einfluss der Pinanordnung untersucht und die Auslegung der Fügezone analysiert. Der Fügeprozess wurde an Funktionsmustern und diese wiederum in 3-Punkt-Biegeversuchen validiert sowie mit dem Kleben verglichen. Y1 - 2023 UR - https://www.joining-plastics.info/artikel/entwicklung-und-analyse-einer-fuegestrategie-fuer-fkvmetall-mischverbindungen-auf-basis-der-cmt-pinschweisstechnik SN - 1864-3450 VL - 17 IS - 1 SP - 28 EP - 35 ER - TY - GEN A1 - Seidlitz, Holger A1 - Michailov, Vesselin A1 - Ost, Lucas A1 - Kuke, Felix A1 - Ambrosio, Marcello A1 - Shapovalov, Oleg A1 - Doynov, Nikolay T1 - Simulation of Composites’ Heating T2 - Kunststoffe international N2 - Modern material-compatible joining methods for fiber-reinforced plastics require the heating of the materials. In order to predict the respective complex temperature fields and curves, the Fraunhofer IAP and the BTU Cottbus-Senftenberg have developed numerical methods, which are able to simulate different radiation sources and process sequences as well. KW - Composites KW - Simulation KW - Joining of Fiber-Reinforced Plastic Composites Y1 - 2023 UR - https://epaper.kunststoffe.de/en/read/26/26/2023-05-26/1 SN - 1862-4243 VL - 113 IS - 4 SP - 60 EP - 64 ER - TY - CHAP A1 - Seidlitz, Holger A1 - Ulke-Winter, Lars A1 - Kuke, Felix A1 - Ost, Lucas ED - Kumar, Sanjeev T1 - Material and Load Path Appropriate Joining Techniques for FRP/Metal Hybrid Structures T2 - Welding - Materials, Fabrication Processes, and Industry 5.0 N2 - Fiber-reinforced plastics (FRP) offer great lightweight construction potential. However, the anisotropic high-performance materials can only be fully utilized through the development of material-specific joining processes. A literature study shows that conventional methods such as screwing, riveting and bolting are unsuitable, since the load-bearing fibers are severed in the joining region. This leads to high-stress concentrations. To reduce these, a method is presented in which through holes are created in thermoplastic FRP by reorienting the fibers in this area around the point of disruption in accordance with the load path. For this purpose, the polymer matrix is softened locally by applying heat and penetrated with a needle or mandrel. Based on this, a technology for material-specific joining of FRP and metals has been developed in the form of thermomechanical flow drill joining. In this process, a mandrel forms a bush from the metal component and deflects the fibers of the locally softened organic sheet to suit the material. Cold metal transfer (CMT) pin welding is presented as another fully automatable joining process. In this method, the softened plastic component is penetrated with the welding wire, displacing the fibers in the joining area and realigning them to suit the load path. KW - fiber-reinforced plastics KW - thermomechanical flow drill joining KW - cold metal transfer pin welding KW - load path KW - fiber orientation Y1 - 2023 UR - https://www.intechopen.com/books/1002588 SN - 978-1-83769-870-7 SN - 978-1-83769-872-1 U6 - https://doi.org/10.5772/intechopen.1002239 PB - IntechOpen CY - London ET - 1. Auflage ER - TY - GEN A1 - Shapovalov, Oleg A1 - Seidlitz, Holger A1 - Ost, Lucas A1 - Doynov, Nikolay A1 - Kuke, Felix A1 - Ambrosio, Marcello A1 - Michailov, Vesselin T1 - Substitution von metallischen Schubfeldern im Fahrzeugbau durch fügetechnische Integration von FKV-Schalen T2 - DVS Congress 2022, Große Schweißtechnische Tagung, DVS Campus ; Kurzfassungen der Vorträge der Veranstaltung in Koblenz vom 19. bis 21. September 2022 ; (Langfassungen der Beiträge auf USB-Karte) N2 - Durch den strukturellen Einsatz von Faser-Kunststoff-Verbunden (FKV) lassen sich hochwertige gewichtsoptimierte Karosserien in Mischbauweise umsetzen. Die untersuchte CMT-Pin-Schweißtechnik zur Verbindung von thermoplastischen Organoblechen mit Stählen bietet, im Vergleich zu anderen Verfahren, neben einer einseitigen Zugänglichkeit, ein hohes Leichtbaupotenzial. Das Vorhaben wurde auf eine werkstoff-, prozess- und konstruktionsgerechte Umsetzung des Verfahrens ausgerichtet. Auf Basis experimenteller und numerischer Untersuchungen wurde eine Methode zum Vorwärmen von Organoblechen mittels Infrarotstrahlung entwickelt. Die Eignung der CMT-Pin-Technologie wurde sowohl für das Fügen von karbon- als auch glasfaserverstärktem PA6 betrachtet. Als Bewertungskriterien wurden das Schweißgut sowie der Faser- und Matrixerhalt in Abhängigkeit der Schweißparameter untersucht. Das entwickelte Verfahren wurde mit herkömmlichen Fügemethoden bzgl. der in Kopf- und Scherzugversuchen ermittelten Festigkeiten verglichen. Zur Bestimmung der Beständigkeit der Verbindungen gegen unterschiedliche Witterungsbedingungen wurden Salzsprühnebel- und Wechselkorrosionstests durchgeführt. Mit dem Fügen von Hutprofilen wurde die Anwendung der entwickelte CMT-Pin-Technik am Tunnel sowie den Längs- und Querträgern der Bodenstruktur eines Kraftfahrzeugs demonstriert. Y1 - 2022 UR - https://www.dvs-ev.de/call4papers/abstract.cfm?vid=115&pid=7586 SN - 978-3-96144-189-1 SP - 385 EP - 393 PB - DVS Media GmbH CY - Düsseldorf ER - TY - GEN A1 - Seidlitz, Holger A1 - Ost, Lucas A1 - Ambrosio, Marcello A1 - Kuke, Felix A1 - Michailov, Vesselin A1 - Shapovalov, Oleg A1 - Doynov, Nikolay T1 - Erwärmung von Composites simulieren T2 - Kunststoffe N2 - Neuartige, werkstoffgerechte Fügeverfahren für Faserkunststoffverbunde setzen die Erwärmung der Materialien voraus. Um die damit verbundenen komplexen Temperaturfelder und -verläufe vorherzusagen, haben das Fraunhofer IAP und die BTU Cottbus-Senftenberg numerische Verfahren entwickelt. Mit diesen können auch verschiedene Strahlungsquellen und Prozessabläufe simuliert werden. KW - Faserkunststoffverbunde KW - Fügen KW - Simulation Y1 - 2023 UR - https://www.kunststoffe.de/a/article-3363044 SN - 0023-5563 IS - 2 SP - 66 EP - 70 ER -