TY - GEN A1 - Obrosov, Aleksei A1 - Yasenchuk, Yuri A1 - Marchenko, Ekaterina A1 - Gunther, Victor A1 - Radkevich, Andrey A1 - Kokorev, Oleg A1 - Gunther, Sergey A1 - Baigonakova, Gulsharat A1 - Hodorenko, Valentina A1 - Chekalkin, Timofey A1 - Kang, Ji-hoon A1 - Weiß, Sabine T1 - Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS) T2 - Materials N2 - Porous TiNi alloys fabricated by self-propagating high-temperature synthesis (SHS) are biomaterials designed for medical application in substituting tissue lesions and they were clinically deployed more than 30 years ago. The SHS process, as a very fast and economically justified route of powder metallurgy, has distinctive features which impart special attributes to the resultant implant, facilitating its integration in terms of bio-mechanical/chemical compatibility. On the phenomenological level, the fact of high biocompatibility of porous SHS TiNi (PTN) material in vivo has been recognized and is not in dispute presently, but the rationale is somewhat disputable. The features of the SHS TiNi process led to a multifarious intermetallic Ti4Ni2(O,N,C)-based constituents in the amorphous-nanocrystalline superficial layer which entirely conceals the matrix and enhances the corrosion resistance of the unwrought alloy. In the current article, we briefly explore issues of the high biocompatibility level on which additional studies could be carried out, as well as recent progress and key fields of clinical application, yet allowing innovative solutions. KW - porous SHS TiNi KW - biocompatibility KW - rheological similarity KW - corrosion resistance KW - bone substitution Y1 - 2019 UR - https://www.mdpi.com/1996-1944/12/15/2405/htm#B2-materials-12-02405 U6 - https://doi.org/10.3390/ma12152405 SN - 1996-1944 VL - 12 IS - 15 ER - TY - GEN A1 - Kokorev, Oleg A1 - Chekalkin, Timofey A1 - Marchenko, Ekaterina A1 - Yasenchuk, Yuri A1 - Gunther, Sergey A1 - Serebrov, Vladimir A1 - Chernyshova, Alena A1 - Obrosov, Aleksei A1 - Kang, Ji-hoon T1 - Exploring the role of surface modifications of TiNi-based alloys in evaluating in vitro cytocompatibility: a comparative study T2 - Surface Topography: Metrology and Properties N2 - The aim of this study was the comparative analysis of in vitro bio-testing of solid and porous TiNi samples with modified surfaces (intact, oxidated, and etched). Tests for cytocompatibility, hemolysis, and cytotoxicity (MTT) as well as visualization by confocal and scanning electron microscopy have shown that the chemically modified samples are the most cytocompatible. The intact and etched samples did not induce hemolysis greater than 2%, and thus they comply with the ISO 10993-4:2018 standard for hemolysis by blood-contacting biomaterials. Direct culture of etched samples with MCF-7 cells and human leukocytes showed low cytotoxicity. At the same time, the cytotoxicity of samples oxidated at 500 °C was significantly greater than that of the etched samples. Confocal and electron microscopy also confirmed the abovementioned quantitative data. The cells attached to the etched surface in numbers sufficient for them to be able to grow and proliferate on this substrate in vitro. These findings indicate that solid and porous TiNi alloy with surface modifications achieved by a cost-effective method is biotolerable and promising for clinical use and for tissue engineering. KW - biocompatibility KW - cytocompatibility KW - TiNi alloys KW - tissue engineering KW - surface modification Y1 - 2020 UR - https://iopscience.iop.org/article/10.1088/2051-672X/abc0f9/meta U6 - https://doi.org/10.1088/2051-672X/abc0f9 SN - 2051-672X VL - 8 IS - 4 ER - TY - GEN A1 - Yasenchuk, Yuri A1 - Marchenko, Ekaterina A1 - Baigonakova, Gulsharat A1 - Gunther, Sergey A1 - Kokorev, Oleg A1 - Gunther, Victor A1 - Chekalkin, Timofey A1 - Topolnitskiy, Evgeniy A1 - Obrosov, Aleksei A1 - Kang, Ji-hoon T1 - Study on tensile, bending, fatigue, and in-vivo behavior of porous SHS-TiNi alloy used as a bone substitute T2 - Biomedical Materials N2 - Intermetallic porous SHS–TiNi alloys exhibit tangled and specific stress-strain characteristics. The article aims to evaluate the findings emanated from experiments using standard and proprietary instruments. Fatigue testing under repeated complex loading was used to measure the total number of load cycles to failure of SHS-TiNi samples. 70% of the tested samples, passed through 106 cycles without failure due to the reversible martensite transformation in the TiNi phase, one of the prevailing constituents of a multiphase matrix. The fractured surfaces were analyzed using SEM and confocal laser scanning instruments. Microscopic studies showed that the entire surface of the sample is concealed with the miscellaneous strata resulted from the SHS process, which effectively protect the porous alloy in a corrosive environment. Numerous non-metallic inclusions, which are also attributed to the SHS reaction, do not have a significant impact on the deformation behavior and fatigue performance. In this context, the successful in vivo functioning of porous grafts assessed in a canine rib-plasty model allows the bone substitute to be congruentially deformed in the body without rejection and degradation, having a long operational life, often greater than 17 million cycles. It acknowledges the potential benefits of SHS–TiNi as a superior osteoplastic material and its high resistance to corrosion fatigue. KW - porous TiNi KW - self-propagating high-temperature synthesis KW - fatigue strength KW - corrosion fatigue KW - biocompatibility Y1 - 2021 UR - https://iopscience.iop.org/article/10.1088/1748-605X/aba327/meta U6 - https://doi.org/10.1088/1748-605X/aba327 SN - 1748-605X VL - 16 IS - 2 ER -