TY - GEN A1 - Damptey, Frederick Gyasi A1 - Birkhofer, Klaus A1 - Nsiah, Paul Kofi A1 - Garcia de la Riva, Enrique T1 - Soil properties and biomass attributes in a former gravel mine area after two decades of forest restoration T2 - Land N2 - The ongoing global deforestation resulting from anthropogenic activities such as unsustainable agriculture and surface mining threatens biodiversity and decreases both soil carbon and above-ground biomass stocks. In this study, we assessed soil properties and below- and above-ground biomass attributes in a restored former gravel mine area in Ghana two decades after active restoration with potted plants and fresh topsoil. We compared conditions to four alternative land-use types (unrestored abandoned gravel mine, arable land, semi-natural forest, and natural forest) representing pre- and post-disturbance as well as natural reference states. We hypothesized that soil properties and related levels of below- and above-ground biomass in the restored area share similarities with the natural reference systems and thereby are indicative of a trajectory towards successful restoration. Eight replicated subareas in each land-use type were assessed for a set of soil parameters as well as below- and above-ground biomass attributes. The soil properties characteristic for the restored area differed significantly from pre-restoration stages, such as the abandoned gravel site, but did not differ significantly from properties in the natural forest (except for bulk density and base saturation). Above-ground biomass was lower in the restored area in comparison to the reference natural forests, while differences were not significant for below-ground biomass. Silt and effective cation exchange capacity were closely related to above-ground biomass, while below-ground biomass was related to soil organic carbon, bulk density, and potassium concentration in soils. Our results suggest that major steps towards successful restoration can be accomplished within a relatively short period, without the wholesale application of topsoil. Improving soil conditions is a vital tool for the successful development of extensive vegetation cover after surface mining, which also affects carbon sequestration by both above- and below-ground biomass. We emphasize that the use of reference systems provides critical information for the monitoring of ecosystem development towards an expected future state of the restored area. KW - carbon sequestration KW - degradation KW - forest management KW - mining KW - restoration success Y1 - 2020 U6 - https://doi.org/10.3390/land9060209 SN - 2073-445X VL - 9 IS - 6 ER - TY - GEN A1 - Nsiah, Paul Kofi A1 - Schaaf, Wolfgang T1 - Subsoil Amendment With Poultry Manure as Topsoil Substitute for Promoting Successful Reclamation of Degraded Mine Sites in Ghana T2 - Journal of Natural Resources and Development N2 - Background: Despite the key role topsoil plays in reclamation, there are situations where topsoil is in deficit or unavailable, especially at degraded and abandoned mine sites in Ghana. The sites pose serious ecological and safety risks, underscoring the urgent need to finding alternative substrate for restoration. This study investigated the feasibility of using amended-subsoil as topsoil substitute for reclamation. The hypothesis was that amendment of stockpiled-subsoil with poultry manure positively influences tree growth and ground vegetation cover (GVC), which promote better soil stabilization at degraded mine sites. A graded waste-rock dump was covered with a 70 cm layer of the stockpiled subsoil at Newmont Ghana Gold Limited. Two experimental plots (24 × 15 m) were established with the treatments poultry manure (PLM 23 t ha-1) and control (no PLM), followed by seeding of Cowpea (Vigna unguiculata) and planting of potted-seedlings of five forest tree species. The Laser-point-quadrat method was used to estimate GVC, whereas erosion was visually observed. Diameter and height data of planted trees and surviving numbers were collected. Results: There was significant increase in tree growth and in GVC for the poultry manure treatment compared to the control. The manure provided sufficient nitrogen to overcome nitrogen deficiency and facilitated quicker and stronger vegetation growth that yielded superior soil stabilization. Conclusions: The findings demonstrate the potential of manure application in promoting successful restoration of the many degraded and abandoned mine sites in Ghana to productive uses. Y1 - 2020 SN - 0719-2452 VL - 10 SP - 1 EP - 12 ER - TY - GEN A1 - Nsiah, Paul Kofi A1 - Schaaf, Wolfgang T1 - The potentials of biological geotextiles in erosion and sediment control during gold mine reclamation in Ghana T2 - Journal of Soils and Sediments N2 - Purpose Soil erosion is a significant environmental impact of surface mining affecting the initial establishment of vegetation, especially on steep slopes, during reclamation. Consequently, we investigated the potentials of biological geotextiles constructed from two local plants, Pennisetum purpureum and Broussonetia papyrifera, in reducing erosion and sedimentation during reclamation at Newmont Ghana Gold Limited. Materials and methods Six experimental plots were constructed on a 33% slope waste rock, covered with a 70-cm layer of stockpiled subsoil. Concrete gutters, lined with silt fence, were installed at the lower end of each plot to collect eroded sediment. The two kinds of biological geotextiles, BYork^ mat and elephant grass mat, were used with bare ground as control in a randomized block design with two replicates each. Data on sediment yield was collected after each substantial rainfall. The performance of each geotextile in reducing soil loss was expressed as a percentage from the mean total sediment yield. Results and discussion With total precipitation of 306 mm in the period April 18, to July 4, 2016, both elephant grass mat and York mat significantly (p < 0.05) reduced soil loss by 56.6% and 97.3%, respectively, compared to the control, indicating both mats were effective in erosion and sediment control. The relatively high performance of York mat was mainly attributed to its more fibers that provided less surface cover (70%) as well as flexibility of the fibers which enabled the mat to absorb more water during rainfall thus increasing its weight. This increase in weight promoted better drapability, with better erosion and sediment control. Gully formations at the site were primarily due to high concentrated runoff flows from the top of reclaiming benches, with time delays between completion of earthworks, geotextile placement, and seeding of plants as predisposing factors. Conclusions The York mat (YM) and the elephant grass mat (EM) individually acted as cover and protected the highly erodible graded mine slope against the erosive forces of tropical rain and runoff until vegetation establishment. Even so, planning and coordinating the reclamation program such that all earthworks are completed at the end of the dry season to enable geotextile installation and plant seeding at the onset of rains, together with installation of temporary slope drains in preventing gully formations from concentrated runoff flows, are considered to contribute significantly to the general reclamation success at Newmont Ghana Gold Limited (NGGL) and similar mine sites. Y1 - 2018 U6 - https://doi.org/10.1007/s11368-018-2217-7 SN - 1614-7480 SN - 1439-0108 VL - 19 IS - 4 SP - 1995 EP - 2006 ER -