TY - JOUR A1 - Güsewell, Manfred A1 - Brandt, U. A1 - Himmelberg, Axel A1 - Küstner, F. A1 - Roth, Norbert T1 - Gastemperaturen in einer Zweiphasenströmung Flüssigkeit/Gas Y1 - 2001 ER - TY - JOUR A1 - Güsewell, Manfred A1 - Himmelberg, Axel A1 - Roth, Norbert A1 - Siepmann, Stefan T1 - Untersuchungen zu Quenchprozessen Y1 - 2001 ER - TY - GEN A1 - Richter, Jana A1 - Rachow, Fabian A1 - Israel, Johannes A1 - Roth, Norbert A1 - Charlafti, Evgenia A1 - Günther, Vivien A1 - Flege, Jan Ingo A1 - Mauß, Fabian T1 - Reaction Mechanism Development for Methane Steam Reforming on a Ni/Al2O3 Catalyst T2 - Catalysts N2 - In this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steady-state fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalyst conversion rate, which helped during the adjustment of the reaction kinetics. To assess the accuracy of the revised mechanism, a monolith experiment from the literature was simulated. The results show that the fitted reaction mechanism was able to accurately predict the experimental outcomes for various inlet mass flows, temperatures, and steam-to-carbon ratios. KW - kinetic reaction mechanism development KW - 1D modeling KW - reaction rates KW - methane steam reforming KW - fixed-bed reactor experiments KW - nickel catalyst Y1 - 2023 U6 - https://doi.org/10.3390/catal13050884 SN - 2073-4344 VL - 13 IS - 5 ER - TY - JOUR A1 - Roth, Norbert A1 - Güsewell, Manfred A1 - Himmelberg, Axel T1 - Messung von Tropfenmerkmalen in einer Quenchapparatur Y1 - 2001 ER - TY - JOUR A1 - Roth, Norbert A1 - Güsewell, Manfred A1 - Himmelberg, Axel T1 - Gestaltung und Betrieb einer Technikumsquenchanlage Y1 - 2001 ER - TY - GEN A1 - Van Treek, Lisa A1 - Roth, Norbert A1 - Seidel, Lars A1 - Mauß, Fabian T1 - Measurements of the laminar burning velocities of rich ethylene/air mixtures T2 - Fuel N2 - Laminar burning velocities of premixed ethylene/air flames were investigated under fuel lean and rich conditions. The laminar burning velocities were measured with the heat flux method at atmospheric pressure and unburnt gas temperatures of 298 K. The measurements have been performed for the equivalence ratio range of Φ = 0.7–2.5 using stabilized and flat flames on a perforated burner plate under adiabatic conditions. This is the first time that experimental measurements with the heat flux method of the ethylene/air flames under super fuel rich conditions are performed. The experimental data were compared against predictions using three different kinetic models and published flame speed. The measured flame speeds agree with other published data within the error margin. The experimental and predicted laminar flames do agree at fuel lean conditions, but there are some notable discrepancies under fuel rich conditions. KW - ethylene KW - laminar burning velocity KW - heat flux burner Y1 - 2020 UR - https://www.sciencedirect.com/science/article/pii/S0016236120309340 U6 - https://doi.org/10.1016/j.fuel.2020.117938 SN - 0016-2361 VL - 275 ER - TY - GEN A1 - Van Treek, Lisa A1 - Roth, Norbert A1 - Seidel, Lars A1 - Mauß, Fabian T1 - Laminar burning velocities of rich ethylene / air flames N2 - The laminar burning velocity SL of a given mixture of fuel and oxidizer is an important parameter to characterize premixed flames. SL is not only a fundamental parameter to calculate properties of turbulent flames, it is also an important target for the development of chemical kinetic mechanisms. Under fuel rich conditions it has relevance when simulating soot formation in burner stabilized flames. Many experiments on soot formation have been conducted in fuel-rich burner stabilized ethylene flames. Therefore an interest exists in experimental data for laminar burning velocity, in particular in fuel-rich ethylene flames. In the present work, ethylene / air flames were measured in the heat flux setup. Subsequently, the experimental data were compared against existing data and modelled using two kinetic models. KW - laminar burning velocity KW - ethylene / air flames KW - rich flames Y1 - 2017 UR - https://www.researchgate.net/publication/320802733_Laminar_burning_velocities_of_rich_ethylene_air_flames N1 - 3rd General Meeting and Workshop on Smart Energy Carriers in Industry – Prague, October 25 - 27, 2017 ER -